Optical Transient from an Explosion Close to the Stellar Surface

Almog Yalinewich

20.11.19

iPTF14hls

​Arcavi ​et ​al. ​2017

Déjà Vu

\mathcal{M}_r @ {\rm 0.1 \,y} = -16 \Rightarrow L \approx 10^{41} \rm erg/s

Arcavi et al. 2017

Theoretical Model

Sequence of Events

What happened in 1954?

80 M_{\odot}

Our Model

Binary Evolution

Progenitor/Relic Mass Relation

NS/BH transition

More massive star -> shorter life

How could a neutron star have formed in the primary's lifetime?

Relic mass

Belczynski et al 2010

Algol Paradox

Less massive but more evolved

Mass transfer

Energy Deposition

Zoom in

accretion

feedback

M82 X-2

Bachetti et al 2014

The Trigger

SAX J1808.4-3658

spontaneous

Pressure build up

energy determined by binding energy

Sanna et al 2017

Giant Flares

Mini EMP from SGR 1806-20

on 21:30:26.5 UT, Dec 27, 2004

10^{46} \, \rm erg

10% of the magnetic energy

Inan et  al 2007

The cinematic experience

https://github.com/bolverk/huji-rich

Zoom In

Observational Signature

Energy

adiabatic losses

Temperature

photon production

Strategy

Hydrodynamic evolution

Energy Deposition

Ejecta distribution

Radiative transfer

Atmospheric Structure

\rho \propto x^{\omega}
\omega = \frac{1}{\gamma-1}

adiabatic atmosphere

adiabatic index

x

Shock Trajectory

l
R
l \gg R
R \propto t^{2/5}
l \ll R
R \propto t^{\beta}
\frac{1}{\omega+4} < \beta < \frac{2}{5+\omega}

momentum

conservation

energy

conservation

Fractal Conservation Law

Fractal dimension of the Sierpinski triangle

\log_2 3 \approx 1.585

Crater Growth

radiative

adiabatic

\beta \left(\omega=3.0\right) \approx 0.19
\beta \left(\omega=1.5\right) \approx 0.25

Yalinewich & Matzner 2019

Ejecta Density Profile

radiative

adiabatic

\frac{d \ln \rho}{d \ln r} \approx -4.5

Yalinewich & Matzner 2019

Ejecta Density Profile

R \propto t^{\beta} \Rightarrow \dot{R}\propto R^{1-1/\beta}
v \approx \frac{r}{t} \approx \dot{R} \Rightarrow R \propto \left(\frac{r}{t}\right)^{\frac{\beta}{\beta-1}}
\rho \propto \rho_0 \frac{R^3}{r^3} \propto r^{-\frac{\omega \beta + 3}{1-\beta}}

Radiation Diffusion

\tau \approx \kappa \rho r \approx \frac{c}{v}

Compton Scattering

opacity

cross section

r_e^2
0.1 \, \rm cm^2/g

Thermalisation

Photon production

Thermal Bremsstrahlung

\dot{n}_{bs} \approx \frac{\alpha c}{r_e^4} \left(n r_e^3\right)^2 \sqrt{\frac{m_e c^2}{k T}}
n_{bb} \approx a T^3/k

In blackbody equilibrium

\frac{r}{c} \tau \dot{n}_{bs} \approx n_{bb}

Colour shell

Radiative Transfer

energy deposited

adiabatic loss

luminosity shell

colour shell

photosphere

Progenitor Model

100 R_{\odot}
80 M_{\odot}
10 R_{\odot}
10^{48} \rm erg

Bondi energy

Lightcurve

1954 event

Temperature

1954 event

Early Time Evolution

1954 event

Shock Breakout

\tau \approx \frac{c}{v}

Shock Ascent

1954 event

Distance from edge

Density

Velocity

Stellar surface

Homologous Expansion

v \approx \frac{r}{t}

Planar Expansion

t

x

Same shell

Luminosity

Watching the same shell cool

V \propto t \Rightarrow U \propto t^{-1/3} \Rightarrow L \propto t^{-4/3}

Logarithmic Correction

Spherical Phase

r \gg l
V \propto t^3

Deeper shells are exposed

l
r

Transition to Cratering

Material from depth l is expelled from the crater

l

Photons diffuse from that shell

end of spherical phase and beginning of crater phase

Radiative Crater?

\frac{d \ln R_c}{d \ln t} > \frac{d \ln R_{l}}{d \ln t}

Eventually, the crater radius exceeds the luminosity radius

After that, photons immediately escape from the shock

Snowplough phase

\frac{d \ln R_c}{d \ln t} = \frac{1}{4 + \omega}

Transition time is extremely long

Shock Temperature

k T_m \approx m_p v^2
\rho v^2 \approx a T_r^4
k T_r \approx \rho^{1/4} v^{1/2} c^{3/4} h^{3/4}
k T_p \approx m_e c^2
k T_s \approx m_e c^2 \left(\frac{m_p}{\alpha m_e}\right)^2 \left(\frac{v}{c}\right)^8

Yalinewich et al 2018

Alternative Explanation

Woosley 2018

Alternative Explanation

Moriya et al 2018

Outlook

More events with LSST?

Rare event (1/century)

Aspherical Supernova

Polarisation from Supernova

Aspherical Supernova

G315.78−0.23 a.k.a Frying pan nebula, from Schnitzel et al 2019

Aspherical Supernova

Rapidly spinning Be stars

Application to Fast Blue Optical Transients

Days since explosion

0

30

Apparent magnitude

10

20

Perley et al 2018

Summary

Developed theoretical model for an explosion near stellar surface

Possible explanation for the 1954 Event

Might also explain FBOTs and weird LSST detections

oblique shock breakout

By almog yalinewich

oblique shock breakout

  • 276