Almog Yalinewich

Stability of the 3 body problem

Possible Fates of Star + 2 Planets

Stable evolution

Plunge into the star

Unbinding from star

"Collision"

Hill Stability

Why not use an N-body integrator?

Numerical Errors

Time

Large Survey

Rebound

Introducing Angular Momentum Deficit

Hill stability guaranteed if

\mathcal{L} < C
L&lt;C\mathcal{L} &lt; C
\mathcal{L} = \gamma \alpha \left(1-\sqrt{1-e_1^2}\cos i_1\right) +1 - \sqrt{1-e_2^2} \cos i_2
L=γα(11e12cosi1)+11e22cosi2\mathcal{L} = \gamma \alpha \left(1-\sqrt{1-e_1^2}\cos i_1\right) +1 - \sqrt{1-e_2^2} \cos i_2
C = \gamma \sqrt{\alpha} + 1 - \left(\gamma+1\right)^{3/2} \sqrt{\frac{\alpha}{\alpha+\gamma} \left(1+\frac{3^{3/4} \varepsilon^{2/3} \gamma}{\left(1+\gamma\right)^2}\right)}
C=γα+1(γ+1)3/2αα+γ(1+33/4ε2/3γ(1+γ)2)C = \gamma \sqrt{\alpha} + 1 - \left(\gamma+1\right)^{3/2} \sqrt{\frac{\alpha}{\alpha+\gamma} \left(1+\frac{3^{3/4} \varepsilon^{2/3} \gamma}{\left(1+\gamma\right)^2}\right)}
\alpha = \frac{a_1}{a_2}
α=a1a2\alpha = \frac{a_1}{a_2}
\gamma = \frac{m_1}{m_2}
γ=m1m2\gamma = \frac{m_1}{m_2}
\varepsilon = \frac{m_1+m_2}{m_0}
ε=m1+m2m0\varepsilon = \frac{m_1+m_2}{m_0}

Schematic

m_2
m2m_2
m_1
m1m_1
m_0
m0m_0
a_2
a2a_2
a_1
a1a_1

Numerical Experiments

Numerical Experiments cont'd

Derivation

Sundman Inequality

T = \frac{1}{2} \sum^N_{i=1} m_i \mathbf{v}_i^2
T=12i=1Nmivi2T = \frac{1}{2} \sum^N_{i=1} m_i \mathbf{v}_i^2

Let us consider an ensemble of particles

m_i, \mathbf{r}_i, \mathbf{v}_i
mi,ri,vim_i, \mathbf{r}_i, \mathbf{v}_i

(masses, radii and velocities)

Kinetic energy

I = \frac{1}{2} \sum^N_{i=1} m_i \mathbf{r}_i^2
I=12i=1Nmiri2I = \frac{1}{2} \sum^N_{i=1} m_i \mathbf{r}_i^2

Moment of inertia

\mathbf{J} = \sum^N_{i=1} m_i \mathbf{r}_i \times \mathbf{v}_i
J=i=1Nmiri×vi\mathbf{J} = \sum^N_{i=1} m_i \mathbf{r}_i \times \mathbf{v}_i

Angular Momentum

Sundman Inequality 2

T = \frac{1}{2} \sum^N_{i=1} \mathbf{V}_i^2
T=12i=1NVi2T = \frac{1}{2} \sum^N_{i=1} \mathbf{V}_i^2

Absorb mass

\mathbf{R}_i = \sqrt{m_i} \mathbf{r}_i, \mathbf{V}_i = \sqrt{m_i} \mathbf{v}_i
Ri=miri,Vi=mivi\mathbf{R}_i = \sqrt{m_i} \mathbf{r}_i, \mathbf{V}_i = \sqrt{m_i} \mathbf{v}_i

Kinetic energy

I = \frac{1}{2} \sum^N_{i=1}\mathbf{R}_i^2
I=12i=1NRi2I = \frac{1}{2} \sum^N_{i=1}\mathbf{R}_i^2

Moment of inertia

\mathbf{J} = \sum^N_{i=1} \mathbf{R}_i \times \mathbf{V}_i
J=i=1NRi×Vi\mathbf{J} = \sum^N_{i=1} \mathbf{R}_i \times \mathbf{V}_i

Angular Momentum

Sundman Inequality 3

\dot{I}^2 = \left(\sum^N_{i=1}\mathbf{R}_i \cdot \mathbf{V}_i \right)^2 < \sum_{i=1}^{N} \left(\mathbf{R}_i \cdot \mathbf{V}_i \right)^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \cdot \mathbf{V}_j \right)^2 \delta_{ij} <\sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \cdot \mathbf{V}_j \right)^2
I˙2=(i=1NRiVi)2&lt;i=1N(RiVi)2=i=1Nj=1N(RiVj)2δij&lt;i=1Nj=1N(RiVj)2\dot{I}^2 = \left(\sum^N_{i=1}\mathbf{R}_i \cdot \mathbf{V}_i \right)^2 &lt; \sum_{i=1}^{N} \left(\mathbf{R}_i \cdot \mathbf{V}_i \right)^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \cdot \mathbf{V}_j \right)^2 \delta_{ij} &lt;\sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \cdot \mathbf{V}_j \right)^2

Cauchy Schwartz Inequality

Sundman Inequality 4

\mathbf{J}^2 = \left(\sum^N_{i=1}\mathbf{R}_i \times \mathbf{V}_i \right)^2 < \sum_{i=1}^{N} \left(\mathbf{R}_i \times\mathbf{V}_i \right)^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \times \mathbf{V}_j \right)^2 \delta_{ij} <\sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \times \mathbf{V}_j \right)^2
J2=(i=1NRi×Vi)2&lt;i=1N(Ri×Vi)2=i=1Nj=1N(Ri×Vj)2δij&lt;i=1Nj=1N(Ri×Vj)2\mathbf{J}^2 = \left(\sum^N_{i=1}\mathbf{R}_i \times \mathbf{V}_i \right)^2 &lt; \sum_{i=1}^{N} \left(\mathbf{R}_i \times\mathbf{V}_i \right)^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \times \mathbf{V}_j \right)^2 \delta_{ij} &lt;\sum_{i=1}^{N} \sum_{j=1}^{N} \left(\mathbf{R}_i \times \mathbf{V}_j \right)^2

Cauchy Schwartz Inequality

Sundman Inequality 5

\dot{I}^2 + \mathbf{J}^2 < \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\left(\mathbf{R}_i \cdot \mathbf{V}_j\right)^2 +\left(\mathbf{R}_i \times \mathbf{V}_j\right)^2 \right] = \sum_{i=1}^{N} \sum_{j=1}^{N} R_i^2 V_j^2 = 4 I T
I˙2+J2&lt;i=1Nj=1N[(RiVj)2+(Ri×Vj)2]=i=1Nj=1NRi2Vj2=4IT\dot{I}^2 + \mathbf{J}^2 &lt; \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\left(\mathbf{R}_i \cdot \mathbf{V}_j\right)^2 +\left(\mathbf{R}_i \times \mathbf{V}_j\right)^2 \right] = \sum_{i=1}^{N} \sum_{j=1}^{N} R_i^2 V_j^2 = 4 I T
\cos^2 \theta + \sin \theta^2 = 1
cos2θ+sinθ2=1\cos^2 \theta + \sin \theta^2 = 1

Sundman Inequality 6

4IT = 4I\left(H-U\right)>\dot{I}^2+\mathbf{J}^2
4IT=4I(HU)&gt;I˙2+J24IT = 4I\left(H-U\right)&gt;\dot{I}^2+\mathbf{J}^2
H = - \frac{G B}{2 a}
H=GB2aH = - \frac{G B}{2 a}
4I H> \mathbf{J}^2+4 IU
4IH&gt;J2+4IU4I H&gt; \mathbf{J}^2+4 IU
I = \frac{1}{2} \frac{B \rho^2}{M}
I=12Bρ2MI = \frac{1}{2} \frac{B \rho^2}{M}
J^2 = \frac{G B^2 p}{M}
J2=GB2pMJ^2 = \frac{G B^2 p}{M}
B = m_0 m_1 + m_1 m_2 + m_2 m_0
B=m0m1+m1m2+m2m0B = m_0 m_1 + m_1 m_2 + m_2 m_0
M = m_0 + m_1 + m_2
M=m0+m1+m2M = m_0 + m_1 + m_2
\frac{\rho}{\nu} >\frac{p}{2 \rho} + \frac{\rho}{2 a}
ρν&gt;p2ρ+ρ2a\frac{\rho}{\nu} &gt;\frac{p}{2 \rho} + \frac{\rho}{2 a}
U = -\frac{G B}{\nu}
U=GBνU = -\frac{G B}{\nu}

Angular Momentum Deficit

Maximum value of right hand side

\frac{\rho}{\nu} >\frac{p}{2 \rho} + \frac{\rho}{2 a}
ρν&gt;p2ρ+ρ2a\frac{\rho}{\nu} &gt;\frac{p}{2 \rho} + \frac{\rho}{2 a}
\frac{\partial}{\partial \rho} \left(\frac{p}{2 \rho} + \frac{\rho}{2 a}\right) = 0 \Rightarrow \rho_{\min}=\sqrt{p a}
ρ(p2ρ+ρ2a)=0ρmin=pa\frac{\partial}{\partial \rho} \left(\frac{p}{2 \rho} + \frac{\rho}{2 a}\right) = 0 \Rightarrow \rho_{\min}=\sqrt{p a}
\frac{\rho}{\nu} >\frac{p}{2 \rho} + \frac{\rho}{2 a} > \frac{p}{a}
ρν&gt;p2ρ+ρ2a&gt;pa\frac{\rho}{\nu} &gt;\frac{p}{2 \rho} + \frac{\rho}{2 a} &gt; \frac{p}{a}

Angular Momentum Deficit 2

x_{1,2} = 1 \pm \sqrt[3]{\varepsilon/3}
x1,2=1±ε/33x_{1,2} = 1 \pm \sqrt[3]{\varepsilon/3}
\varepsilon = \frac{m_1 + m_2}{M} \ll 1
ε=m1+m2M1\varepsilon = \frac{m_1 + m_2}{M} \ll 1
\frac{\rho_{1,2}^2}{\nu_{1,2}^2} \approx 1 + 3^{3/4} \varepsilon^{2/3} \frac{\gamma}{\left(1+\gamma\right)^2}
ρ1,22ν1,221+33/4ε2/3γ(1+γ)2\frac{\rho_{1,2}^2}{\nu_{1,2}^2} \approx 1 + 3^{3/4} \varepsilon^{2/3} \frac{\gamma}{\left(1+\gamma\right)^2}
\gamma = \frac{m_1}{m_2}
γ=m1m2\gamma = \frac{m_1}{m_2}

Angular Momentum Deficit 3

\frac{p}{a} > \frac{\rho_{1,2}^2}{\nu_{1,2}^2} \approx 1 + 3^{3/4} \varepsilon^{2/3} \frac{\gamma}{\left(1+\gamma\right)^2}
pa&gt;ρ1,22ν1,221+33/4ε2/3γ(1+γ)2\frac{p}{a} &gt; \frac{\rho_{1,2}^2}{\nu_{1,2}^2} \approx 1 + 3^{3/4} \varepsilon^{2/3} \frac{\gamma}{\left(1+\gamma\right)^2}

Stability is guaranteed if

\frac{p}{a} = - \frac{2 J^2 M H}{G^2 B^3}
pa=2J2MHG2B3\frac{p}{a} = - \frac{2 J^2 M H}{G^2 B^3}

Recalling the definitions

Angular Momentum Deficit 4

H \approx -\frac{1}{2} \frac{G m_0 m_1}{a_1} - -\frac{1}{2} \frac{G m_0 m_2}{a_2}
H12Gm0m1a112Gm0m2a2H \approx -\frac{1}{2} \frac{G m_0 m_1}{a_1} - -\frac{1}{2} \frac{G m_0 m_2}{a_2}
J \approx J_z = m_1 \sqrt{G m_0 a_1 \left(1-e_1^2\right) }\cos i_1 + m_2 \sqrt{G m_0 a_2 \left(1-e_2^2\right) } \cos i_2
JJz=m1Gm0a1(1e12)cosi1+m2Gm0a2(1e22)cosi2J \approx J_z = m_1 \sqrt{G m_0 a_1 \left(1-e_1^2\right) }\cos i_1 + m_2 \sqrt{G m_0 a_2 \left(1-e_2^2\right) } \cos i_2
\frac{p}{a} \approx \frac{1+\varepsilon}{\varepsilon^3 \left(1+\gamma\right)^3 \left(1+\frac{\varepsilon \gamma}{\left(1+\gamma\right)^2}\right)^3} \left(1+\frac{\gamma}{\alpha}\right) \cdot
pa1+εε3(1+γ)3(1+εγ(1+γ)2)3(1+γα)\frac{p}{a} \approx \frac{1+\varepsilon}{\varepsilon^3 \left(1+\gamma\right)^3 \left(1+\frac{\varepsilon \gamma}{\left(1+\gamma\right)^2}\right)^3} \left(1+\frac{\gamma}{\alpha}\right) \cdot
\left(\gamma \sqrt{\alpha} \sqrt{1-e_1^2} \cos i_1 - \sqrt{1-e_2^2} \cos i_2 \right)
(γα1e12cosi11e22cosi2)\left(\gamma \sqrt{\alpha} \sqrt{1-e_1^2} \cos i_1 - \sqrt{1-e_2^2} \cos i_2 \right)

Conclusion

Hill stability criterion for

m_0 \gg m_1, m_2
m0m1,m2m_0 \gg m_1, m_2
e_1, e_2 \ll 1
e1,e21e_1, e_2 \ll 1
\gamma = \frac{m_1}{m_2}
γ=m1m2\gamma = \frac{m_1}{m_2}

arbitrary

and

i_1, i_2
i1,i2i_1, i_2

angular momentum deficit

By almog yalinewich

angular momentum deficit

  • 327