Disintegrating Bullet Model for Null Periods in GRBs

Almog Yalinewich - RandoAstro -13.2.20

Also experiments!

If you've seen one GRB,

you've seen just one GRB

null periods

LGRB - SN association

SN 1998bw

GRB 980425

Collapsars

Collapsars

Illustration

Acceleration

Rayleigh Taylor Instability

Disintegrating  Bullet Model

Mathematical Model

Projectile motion

Instability evolution

Newtonian Projectile Motion

m\frac{d v}{d t} = A p

Equation of motion

Velocity pressure relation? Riemann invariants

J_+ = v + \frac{2}{\gamma - 1} c_s
p \propto \rho^{\gamma}

Isentropic relation

v{\left(t \right)} = \frac{2 c_0}{\gamma-1} \left(1 - \left( \frac{A p_{0} t}{2 m c_0} \left(\gamma + 1\right)^{3} + \left(\gamma +1\right)^2\right)^{\frac{1 - \gamma}{\gamma + 1}}\right)

Sound speed

c_s^2 = \gamma \frac{p}{\rho}

Riemann Invariants

Acoustic relation

dv = \frac{dp}{c_s \rho}

Extrapolation

\Delta v = \int\frac{dp}{c_s \rho}

Ideal gas

J_+ = v + \frac{2 c_s}{\gamma-1}

Rayleigh Taylor Growth Rate

\Gamma \approx \sqrt{k a}

High k - grow fast and saturate fast

Low k - grow slow

optimal k determined by bullet width

Bullet Width Evution

x

p

contact with pressure behind

Bullet expands adiabatically after the first shock

Breakup Time

\Gamma t \approx 1

but in this case this is independent of time

4 S^{- \frac{1}{\gamma}} c_{0}^{\frac{2 \gamma \left(\gamma^{2} + 2 \gamma + 1\right)}{\gamma^{3} + \gamma^{2} - \gamma - 1}} p_{0}^{- \frac{\gamma^{3} + 1}{\gamma \left(\gamma^{2} - 1\right)}} \left(\frac{\rho_{0}}{\gamma}\right)^{\frac{1}{\gamma - 1}} \left(\gamma + 1\right)^{-2}

Either happens in the very beginning, or never

Perturbation growth

Enter Relativity!

Relativistic Riemann Invariant

J_+^p = \ln \gamma + \frac{\sqrt{\eta-1}}{\eta} \ln p
J_+^s = \ln \gamma + \frac{\sqrt{\eta-1}}{\eta} \ln p + \frac{2\sqrt{\eta-1}}{{1+\sqrt{\eta-1}}} \ln t

Even in spherical geometry

Acceleration Transformation

x = \beta_0 t + a t^2/2
\gamma_0 \begin{bmatrix} 1 & -\beta_0 \\ -\beta_0 & 1 \end{bmatrix} \begin{bmatrix} t\\ \beta_0 t + a t^2/2 \end{bmatrix} \approx \begin{bmatrix} t/\gamma_0\\ \gamma_0 a t^2/2 \end{bmatrix}

Motion with uniform acceleration

Lorentz boost to instantaneously comoving frame

Rest frame quantities

t'=t/\gamma_0, a'=a \gamma_0^3

Opening Angle

\theta \approx \frac{1}{\gamma}

Relativistic beaming

Wide jets

\alpha > \gamma^{-1} \Rightarrow \alpha = \rm cons

Narrow jets

\alpha < \gamma^{-1} \Rightarrow \alpha = \gamma^{-1}

Instability Growth

\Gamma = \sqrt{k a \frac{\rho c^2}{p}}

Relativistic inertia effect pm growth rate

Breakup time

t' \Gamma \approx 1

Grows with time!

Application

t \approx 10^3 \, {\rm s} \left(\frac{\gamma_i}{10}\right)^{1.3} \left(\frac{m}{10^{-8} M_{\odot}}\right)^{0.27}

Using typical values, breakup time in the lab frame

Observer time

t_o \approx \frac{t}{\gamma_i^2} \approx 10s
\times \left(\frac{t_i}{100 \, rm s}\right)^{0.2} \left(\frac{\alpha}{0.1}\right)^{-0.53} \left(\frac{\rho_a}{10^{-9} \, rm g/cm^3}\right)^{-0.27}

disintegrating bullet

By almog yalinewich

disintegrating bullet

  • 264