Generalized compactness limit from an arbitrary viewing

Almog Yalinewich

Randoastro group meeting

21.3.19

Filler

Gamma Ray Bursts

Spectrum

Compactness Problem

Duration

~ 2 second

Length

10^{11} \rm cm

x c

Compactness Problem

Isotropic Equivalent Energy

E_{\rm iso} \approx 10^{51} \rm \, erg

Compactness Problem

10^{11} \, \rm cm

Energy density

10^{18} \, \rm \frac{erg}{cm^3}

Photon density

10^{24} \, \rm cm^{-3}

Optical depth to pair production

\tau_{pp} \approx 10^{11}

Compton Scattering

Before

After

Longer duration

Energy Cutoff

Enter Special Relativity

Observer Time

\Delta t_e
\Delta t_o
\Delta t_o \approx \frac{\Delta t_e}{\gamma^2}

Resolution

Radius grows by

\gamma^2

Optical depth diminishes by

\gamma^{-4}

Necessary Lorentz factor

\gamma \approx 1000

Non relativistic optical depth

\tau \approx 10^{11}

Relativistic Beaming

\theta \approx \gamma^{-1}

Observations

Single Messenger Era - On axis only

GW170817

Off axis GRB

Today's Paper

Compactness conditions for off axis emisison

Off Axis Variability

Cosine theorem

c \Delta t_{\rm ang} \approx \sqrt{r^2+R^2 - 2 r R \cos \theta} - \sqrt{r^2+R^2 - 2 r R \cos \left(\theta-\theta_{\gamma}\right)} \approx \frac{R}{c} \theta_{\gamma} \sin \theta

Compare with radial delay

\Delta t_r \approx \frac{R}{c \gamma^2}

Number of Photons

\delta_{\rm D} = \frac{1}{\gamma \left(1-\beta \cos \theta \right)}
\Delta \Omega = \frac{\Delta \Omega'}{\delta_{\rm D}^2}
N_{\gamma} \approx \frac{E_{\rm iso}}{\delta_D^2 e_p}
\theta \ll \gamma^{-1}
\theta \gg \gamma^{-1}
\delta_{\rm D} \approx \gamma
\delta_{\rm D} \approx \gamma^{-1} \theta^{-2}

Spectrum

e_1 \cdot e_2 = m_e^2 c^4

quality

quantity

Annihilating Fraction

 

Low and high energy pair production

Enough energy in a single photon

Lower Bound on Optical Depth

\tau \approx \frac{\sigma N_s}{\theta_{\gamma}^2 R^2} \approx \frac{\sigma E_{\rm iso}}{c^2 \Delta t_o^2 \epsilon_p} \frac{f}{\max \left(1/\gamma,\theta\right)^2 \gamma^2 \delta^4}
\approx 10^{14} \frac{E_{\rm iso}}{10^{51} \, \rm erg} \left(\frac{\Delta t_o}{1 \, \rm s} \frac{\epsilon_p}{100 \, \rm keV} \right)^{-1} \frac{f}{\max \left(1/\gamma,\theta\right)^2 \gamma^2 \delta^4}

Application

Application

Application

Most GRBs are edge on

Application

More complicated spectrum allows for larger angles

off axis gamma ray bursts

By almog yalinewich

off axis gamma ray bursts

  • 294