Flow of Gas around the Galactic Centre

Almog Yalinewich

Introduction

Journey to the Galactic Centre

Nuclear Star Cluster

Wind Emitting Stars

Chandra view of the Galactic Centre

Simplified Model

Other Galactic Centres

Theoretical Model

Conservation of Mass

\frac{1}{r^2} \frac{d}{dr} \left( \rho v r^2\right) = D r^{-\eta}
1r2ddr(ρvr2)=Drη\frac{1}{r^2} \frac{d}{dr} \left( \rho v r^2\right) = D r^{-\eta}

Conservation of Energy

\frac{1}{r^2} \frac{d}{dr} \left( \rho v r^2 \left(\frac{1}{2} v^2 + \frac{\gamma}{\gamma-1} \frac{p}{\rho} - \frac{G M}{r} \right)\right) =
1r2ddr(ρvr2(12v2+γγ1pρGMr))=\frac{1}{r^2} \frac{d}{dr} \left( \rho v r^2 \left(\frac{1}{2} v^2 + \frac{\gamma}{\gamma-1} \frac{p}{\rho} - \frac{G M}{r} \right)\right) =
= D r^{-\eta} \left(\frac{1}{2} v_w^2 - \frac{G M}{r} \right)
=Drη(12vw2GMr)= D r^{-\eta} \left(\frac{1}{2} v_w^2 - \frac{G M}{r} \right)

Conservation of Momentum

\rho v \frac{d v}{d r} + \frac{1}{\rho} \frac{d p}{d r}= -\frac{G M}{r^2} \rho - D r^{-\eta} v
ρvdvdr+1ρdpdr=GMr2ρDrηv\rho v \frac{d v}{d r} + \frac{1}{\rho} \frac{d p}{d r}= -\frac{G M}{r^2} \rho - D r^{-\eta} v

Integrated Forms

\rho v r^2 = D \frac{r^{3-\eta} - r_{st}^{-\eta}}{3-\eta}
ρvr2=Dr3ηrstη3η\rho v r^2 = D \frac{r^{3-\eta} - r_{st}^{-\eta}}{3-\eta}
\frac{1}{2} v^2 + \frac{c_s^2}{\gamma-1} = GM \frac{r^{3-\eta} + \left(2-\eta\right) r_{st}^{3-\eta} - \left(3-\eta\right) r r_{st}^{2-\eta}}{\left(2-\eta\right) r \left(r^{3-\eta}-r_{st}^{3-\eta}\right)}
12v2+cs2γ1=GMr3η+(2η)rst3η(3η)rrst2η(2η)r(r3ηrst3η)\frac{1}{2} v^2 + \frac{c_s^2}{\gamma-1} = GM \frac{r^{3-\eta} + \left(2-\eta\right) r_{st}^{3-\eta} - \left(3-\eta\right) r r_{st}^{2-\eta}}{\left(2-\eta\right) r \left(r^{3-\eta}-r_{st}^{3-\eta}\right)}
r_{st}
rstr_{st}

Stagnation radius

Mass conservation

Energy conservation

Dimensionless Form

r_b = \frac{G M}{v_w^2}
rb=GMvw2r_b = \frac{G M}{v_w^2}
\rho_b = D \frac{r_b^{1-\eta}}{v_w}
ρb=Drb1ηvw\rho_b = D \frac{r_b^{1-\eta}}{v_w}
\tilde{r} = \frac{r}{r_b}
r~=rrb\tilde{r} = \frac{r}{r_b}
\tilde{v} = \frac{v}{v_w}
v~=vvw\tilde{v} = \frac{v}{v_w}
\tilde{c}_s = \frac{c_s}{v_w}
c~s=csvw\tilde{c}_s = \frac{c_s}{v_w}
\tilde{\rho} = \frac{\rho}{\rho_b}
ρ~=ρρb\tilde{\rho} = \frac{\rho}{\rho_b}

Analytic Solution

\eta = 5/2, \gamma=5/3
η=5/2,γ=5/3\eta = 5/2, \gamma=5/3
\tilde{\rho} = \frac{4\sqrt{6}}{3 \tilde{r}^{3/2}}
ρ~=463r~3/2\tilde{\rho} = \frac{4\sqrt{6}}{3 \tilde{r}^{3/2}}
\tilde{v} = \frac{\sqrt{6}}{4} - \frac{1}{\sqrt{\tilde{r}}}
v~=641r~\tilde{v} = \frac{\sqrt{6}}{4} - \frac{1}{\sqrt{\tilde{r}}}
\tilde{c}_s^2 = \frac{5}{24} + \frac{1}{3 \tilde{r}}
c~s2=524+13r~\tilde{c}_s^2 = \frac{5}{24} + \frac{1}{3 \tilde{r}}
\tilde{r}_{st} = \frac{8}{3}
r~st=83\tilde{r}_{st} = \frac{8}{3}

Generic Case

\frac{d m}{d \tilde{r}} = f \left(\tilde{r}, m\right)
dmdr~=f(r~,m)\frac{d m}{d \tilde{r}} = f \left(\tilde{r}, m\right)

Mach number ODE

\tilde{r}
r~\tilde{r}
m
mm
\tilde{r}
r~\tilde{r}
m
mm

Wrong

\tilde{r}_{st}
r~st\tilde{r}_{st}

Right

\tilde{r}_{st}
r~st\tilde{r}_{st}

Inner Asymptote

\lim_{\tilde{r}\to0} m =- \sqrt{3}
limr~0m=3\lim_{\tilde{r}\to0} m =- \sqrt{3}
\gamma = 5/3
γ=5/3\gamma = 5/3

Always supersonic

\gamma < 5/3
γ<5/3\gamma < 5/3
\lim_{\tilde{r}\to0} m =- \infty
limr~0m=\lim_{\tilde{r}\to0} m =- \infty

Boundary condition: finite          when

\frac{dm}{d \tilde{r}}
dmdr~\frac{dm}{d \tilde{r}}
m=-1
m=1m=-1

Inner Asymptote

v \propto -\frac{1}{\sqrt{r}}
v1rv \propto -\frac{1}{\sqrt{r}}
\rho \propto r^{-3/2}
ρr3/2\rho \propto r^{-3/2}

Independent of

\eta
η\eta

Mass dominated by stagnation radius

Outer Asymptote

\lim_{\tilde{r}\to\infty } m = \sqrt{\frac{\eta-1}{\gamma \left(3-\eta\right)}}
limr~m=η1γ(3η)\lim_{\tilde{r}\to\infty } m = \sqrt{\frac{\eta-1}{\gamma \left(3-\eta\right)}}

No steady state solution when

\eta < 1
η<1\eta < 1

Easiest to understand for the case

\eta = 0
η=0\eta = 0

Supersonic when

\eta > \frac{3 \gamma + 1}{\gamma+1}
η>3γ+1γ+1\eta > \frac{3 \gamma + 1}{\gamma+1}

Outer Asymptote

v \propto const
vconstv \propto const
\rho \propto r^{1-\eta}
ρr1η\rho \propto r^{1-\eta}

Hydrodynamic Profiles

\gamma = \frac{5}{3}, \eta=1.9
γ=53,η=1.9\gamma = \frac{5}{3}, \eta=1.9
\gamma = \frac{4}{3}, \eta=1.9
γ=43,η=1.9\gamma = \frac{4}{3}, \eta=1.9

Hydrodynamic Profiles

\gamma = \frac{5}{3}, \eta=1.9
γ=53,η=1.9\gamma = \frac{5}{3}, \eta=1.9
\gamma = \frac{4}{3}, \eta=1.9
γ=43,η=1.9\gamma = \frac{4}{3}, \eta=1.9

Hydrodynamic Profiles

\gamma = \frac{5}{3}, \eta=1.9
γ=53,η=1.9\gamma = \frac{5}{3}, \eta=1.9
\gamma = \frac{4}{3}, \eta=1.9
γ=43,η=1.9\gamma = \frac{4}{3}, \eta=1.9

Truncation

\dot{\rho}
ρ˙\dot{\rho}
r
rr
r_t
rtr_t

Steady state always exists if mass injection is truncated

Truncation 2

\dot{\rho}
ρ˙\dot{\rho}
r
rr
r_t
rtr_t
\rho
ρ\rho
r
rr
r_t
rtr_t
r^{-2}
r2r^{-2}

Truncation 3

\dot{\rho}
ρ˙\dot{\rho}
r
rr
r_o
ror_o
\rho
ρ\rho
r
rr
r^{-2}
r2r^{-2}
r_i
rir_i
r_o
ror_o
r_i
rir_i

Truncation 4

\dot{\rho}
ρ˙\dot{\rho}
r
rr
r_o
ror_o
\rho
ρ\rho
r
rr
r^{-2}
r2r^{-2}
r_i
rir_i
r_o
ror_o
r_i
rir_i
GM
GMGM
r^{-3/2}
r3/2r^{-3/2}

Radiation

Bremsstrahlung

\varepsilon_{\nu} \approx \frac{m_e c^2}{r_e^3} \sqrt{\frac{m_e c^2}{k T}} \left(n r_e^3\right)^2 \exp \left(- \frac{h \nu}{k T} \right)
ενmec2re3mec2kT(nre3)2exp(hνkT)\varepsilon_{\nu} \approx \frac{m_e c^2}{r_e^3} \sqrt{\frac{m_e c^2}{k T}} \left(n r_e^3\right)^2 \exp \left(- \frac{h \nu}{k T} \right)
L_{\nu} \approx \int \varepsilon_{\nu} r^2 dr
Lνενr2drL_{\nu} \approx \int \varepsilon_{\nu} r^2 dr

Truncation necessary to avoid divergence

Synthetic Spectrum

\tilde{\nu} = \frac{h \nu}{m_p v_w^2}
ν~=hνmpvw2\tilde{\nu} = \frac{h \nu}{m_p v_w^2}
\tilde{\nu} \tilde{L} = \frac{\nu L}{\dot{M} c^2}
ν~L~=νLM˙c2\tilde{\nu} \tilde{L} = \frac{\nu L}{\dot{M} c^2}
\gamma = \frac{5}{3}, \eta = \frac{5}{2}
γ=53,η=52\gamma = \frac{5}{3}, \eta = \frac{5}{2}

Retrieving the Mass accretion rate

\dot{M} \approx 7.5 \cdot 10^{-4} M_{\odot} \, yr^{-1} \times
M˙7.5104Myr1×\dot{M} \approx 7.5 \cdot 10^{-4} M_{\odot} \, yr^{-1} \times
\left(\frac{\nu_0 L_{\nu_0}}{10^{38}\,{ erg\,s^{-1}}}\right)^{1/2} \left(\frac{M}{4\cdot 10^6 M_{\odot}}\right)^{1/2} \left(\frac{v_w}{500 \, km/s}\right)^{-1}
(ν0Lν01038ergs1)1/2(M4106M)1/2(vw500km/s)1\left(\frac{\nu_0 L_{\nu_0}}{10^{38}\,{ erg\,s^{-1}}}\right)^{1/2} \left(\frac{M}{4\cdot 10^6 M_{\odot}}\right)^{1/2} \left(\frac{v_w}{500 \, km/s}\right)^{-1}

Applications

Milky Way Galactic Centre

Density Comparison

Data favours

\eta = 0
η=0\eta = 0

Surface Brightness

data favours

\eta = 3
η=3\eta = 3

Surface Brightness 2

Different normalisation

All models agree

outside Chandra PSF

Unresolved central source?

Stellar Density

Genzel et al 2010

Other Galactic Centres

Swift 1644+57

Achromatic break

at 10 days

Tidal Disruption Event Jet

Jet Break?

Break when reverse shock

reaches jet base?

Break when swept up mass is comparable to jet energy?

Density Break?

Break radius

t_b \cdot c \approx 0.01 \, pc
tbc0.01pct_b \cdot c \approx 0.01 \, pc

fallback rate implies

M \approx 10^6 M_{\odot}
M106MM \approx 10^6 M_{\odot}

Bondi radius

r_b \approx 0.004 pc \frac{M}{10^6 M_{\odot}} \left( \frac{v_w}{1000 km/s} \right)^{-2}
rb0.004pcM106M(vw1000km/s)2r_b \approx 0.004 pc \frac{M}{10^6 M_{\odot}} \left( \frac{v_w}{1000 km/s} \right)^{-2}
3 r_b \approx t_b \cdot c
3rbtbc3 r_b \approx t_b \cdot c

Truncation radius?

Conclusion

Steady state, smooth, spherically symmetric flow model

prediction for spectrum from Bremsstrahlung

Resolve conflicting results for SGR A*

Proposition for achromatic breaks in TDEs

Flow of Gas around the Galactic Centre TAU

By almog yalinewich

Flow of Gas around the Galactic Centre TAU

  • 339