Quantum Monte Carlo approaches for strongly correlated systems

Variational Monte Carlo

Stochastic multireference perturbation theory

Auxiliary field QMC

Outline

  • Sampling and the sign problem in AFQMC 
  • Reducing noise using selected CI wave functions 
  • Convergence of phaseless errors
  • Jastrow symmetry projected states in VMC
  • Auxiliary field QMC
  • Variational MC
  • Ongoing work

Free projection QMC

Projection QMC methods:

e^{-\tau (\hat{H}-E_0)}|\psi\rangle = c_0|\Psi_0\rangle + c_1 e^{-\Delta E_1\tau}|\Psi_1\rangle+\dots
|\psi\rangle = c_0|\Psi_0\rangle + c_1|\Psi_1\rangle +\dots
  • Better \(|\psi\rangle\) approximates \(|\Psi_0\rangle\), faster the convergence with \(\tau\)
E(\tau)=\dfrac{\langle\psi_l|\hat{H}e^{-\tau \hat{H}}|\psi_r\rangle}{\langle\psi_l|e^{-\tau \hat{H}}|\psi_r\rangle}

Mixed energy estimator:

Trial states: Selected CI, CCSD, Jastrow, MPS, ...

  • Noise in QMC sampling worsens exponentially with \(\tau\)

Sampling in AFQMC

\hat{H} = \hat{K} + \hat{V} = t_{pr} \hat{a}_{p}^{\dagger}\hat{a}_r + \frac{1}{2}v_{prqs}\hat{a}_{p}^{\dagger}\hat{a}_r\hat{a}_{q}^{\dagger}\hat{a}_{s}

Exponentiating \(\hat{H}\):  \([\hat{K}, \hat{V}] \neq 0\)

e^{-\tau\hat{H}}\approx\left(e^{-\frac{\tau}{N}\frac{\hat{K}}{2}}e^{-\frac{\tau}{N}\hat{V}}e^{-\frac{\tau}{N}\frac{\hat{K}}{2}}\right)^N
  • Exponentiating \(\hat{K}\):  orbital transformation
e^{t_{pr}\hat{a}_p^{\dagger}\hat{a}_r}|\phi\rangle=|\phi'\rangle

where \(|\phi\rangle\) and \(|\phi'\rangle\) are nonorthogonal determinants.

  • Exponentiating  \(\hat{V} = \frac{1}{2}\sum_{\gamma} \left(L^{\gamma}_{pr}\hat{a}_p^{\dagger}\hat{a}_r\right)^2\):
e^{-\frac{\hat{L}_{\gamma}^2}{2}} = \int \frac{dx_{\gamma}}{\sqrt{2\pi}}\ e^{\frac{-x_{\gamma}^2}{2}}e^{ix_{\gamma}\hat{L}_{\gamma}}

\(x_{\gamma}\): auxiliary field

Motta and Zhang (2017), 1711.02242

(Thouless, 1960)

(Stratonovich, 1957)

E(\tau) = \dfrac{\langle\psi_l|\hat{H}e^{-\tau \hat{H}}|\psi_r\rangle}{\langle\psi_l|e^{-\tau \hat{H}}|\psi_r\rangle} \approx \dfrac{\int\ dX p(X)\langle\psi_l|\hat{H}\hat{\mathcal{B}}(X)|\psi_r\rangle}{\int\ dX p(X)\langle\psi_l|\hat{\mathcal{B}}(X)|\psi_r\rangle}

Sample Gaussian auxiliary fields \(X\), propagate, and measure

E(\tau)\approx\dfrac{\sum_i\langle\psi_l|\hat{H}|\phi_i\rangle}{\sum_i\langle\psi_l|\phi_i\rangle}

CCSD as \(|\psi_r\rangle\): sampling Slater determinants from CCSD

|\psi_r\rangle = \exp\left(t_{ikjl}\hat{a}_i^{\dagger}\hat{a}_k\hat{a}_j^{\dagger}\hat{a}_l\right)\exp\left(t_{ik}\hat{a}_i^{\dagger}\hat{a}_k\right)|\phi_0\rangle

commuting ph excitations \(\rightarrow\) no Trotter error

\((\text{H}_2\text{O})_2\), (16e, 80o)

The sign problem

\text{Var}\left(\dfrac{\overline{N}}{\overline{D}}\right) \approx \dfrac{\text{Var}(\overline{N})}{\overline{D}^2} + \dfrac{\overline{N}^2\text{Var}(\overline{D})}{\overline{D}^4} - 2\dfrac{\overline{N}\text{Cov}(\overline{N},\overline{D})}{\overline{D}^3}
E(\tau)\approx\dfrac{\sum_i\langle\psi_l|\hat{H}|\phi_i\rangle}{\sum_i\langle\psi_l|\phi_i\rangle} = \dfrac{\overline{N}}{\overline{D}}

Contour shift:

e^{-\frac{y^2}{2}} = \int \frac{dx}{\sqrt{2\pi}}\ e^{\frac{-x^2}{2}+ixy}
x\rightarrow x+iy
x_{\gamma} \rightarrow x_{\gamma} + i \sqrt{\tau}\langle\hat{L}_{\gamma}\rangle

In AFQMC:

Baer, Head-Gordon, Neuhauser (1998)

Zero variance principle

If \(|\psi_l\rangle\) is the exact ground state, then \(N\) and \(D\) are perfectly correlated, \(\langle\psi_0|\hat{H}|\phi_i\rangle = E_0 \langle\psi_0|\phi_i\rangle\), and the energy estimator has zero variance. More accurate \(|\psi_l\rangle\ \rightarrow\ \) higher \(\text{Cov}(N, D)\).

E(\tau)\approx\dfrac{\sum_i\langle\psi_l|\hat{H}|\phi_i\rangle}{\sum_i\langle\psi_l|\phi_i\rangle} = \dfrac{\overline{N}}{\overline{D}}
\text{Var}\left(\dfrac{\overline{N}}{\overline{D}}\right) \approx \dfrac{\text{Var}(\overline{N})}{\overline{D}^2} + \dfrac{\overline{N}^2\text{Var}(\overline{D})}{\overline{D}^4} - 2\dfrac{\overline{N}\text{Cov}(\overline{N},\overline{D})}{\overline{D}^3}

\((\text{H}_2\text{O})_2\), (16e, 80o)

Selected configuration interaction: put the most important configurations in the state using particle-hole excitations and diagonalize

|\psi_l\rangle = \sum_i^{N_c} c_i |\psi_i\rangle

Selected CI local energy algorithm

E_L[\phi]=\dfrac{\langle\psi_l|\hat{H}|\phi\rangle}{\langle\psi_l|\phi\rangle},\ \text{two-body part: }\ L^{\gamma}_{pr}L^{\gamma}_{qs}\dfrac{\langle\psi_l|\hat{a}_p^{\dagger}\hat{a}_q^{\dagger}\hat{a}_s\hat{a}_r|\phi\rangle}{\langle\psi_l|\phi\rangle}

If \(|\psi_l\rangle\) is a Slater determinant: \(|\psi_l\rangle = |\psi_0\rangle\)

O(N^4)

If \(|\psi_l\rangle\) is a selected CI wave function: \(|\psi_l\rangle = \sum_i^{N_d} c_i |\psi_i\rangle\)

Naive way: calculating local energy of each Slater determinant as above costs \(O(N_dN^4)\)

Generalized Wick's theorem

consider \(|\psi_l\rangle = c_{ptqu}\hat{a}_t^{\dagger}\hat{a}_p\hat{a}_u^{\dagger}\hat{a}_q|\psi_0\rangle\) (double excitations)

E_L[\phi]=\dfrac{\langle\psi_l|\hat{H}|\phi\rangle}{\langle\psi_l|\phi\rangle},\ \text{two-body part: }\ L^{\gamma}_{pr}L^{\gamma}_{qs}\dfrac{\langle\psi_l|\hat{a}_p^{\dagger}\hat{a}_q^{\dagger}\hat{a}_s\hat{a}_r|\phi\rangle}{\langle\psi_l|\phi\rangle}

\(O(N^4 + N_dN)\)

\((\text{H}_2\text{O})_2\), (16e, 80o)

\([\text{Cu}_2\text{O}_2]^{2+}\) isomerization

kcal/mol

Phaseless AFQMC

\(\text{H}_{50}\) (50e, 50o)

Gets rid of the sign problem, but has a systematic trial dependent bias

Active space trial states

\(\text{H}_{10}\) (10e, 50o)

Outline

  • Sampling and the sign problem in AFQMC 
  • Reducing noise using selected CI wave functions 
  • Convergence of phaseless errors
  • Jastrow symmetry projected states in VMC
  • Auxiliary field QMC
  • Variational MC
  • Ongoing work

Variational Monte Carlo (VMC)

E = \dfrac{\langle \psi|H|\psi\rangle }{\langle \psi|\psi\rangle}

Strategy:

  • Parametrize the wave function: \(|\psi(\mathbf{p})\rangle\), choose initial \(\mathbf{p}\)
  • Calculate energy and gradient: Markov chain Monte Carlo
\ \dfrac{\langle \psi(\mathbf{p})|H|\psi(\mathbf{p})\rangle }{\langle \psi(\mathbf{p})|\psi(\mathbf{p})\rangle} = \sum_{\mathbf{n}} \rho_{\mathbf{n}} E_L[\mathbf{n}]
  • Optimize: smart gradient descent to change parameters
\propto|\langle \mathbf{n}|\psi(\mathbf{p})\rangle|^2

Ground state minimizes

\text{walker}: |\mathbf{n}\rangle

McMillan (1965)

Symmetry projection in VMC

Symmetry breaking \(\rightarrow\) more variational freedom

|\psi\rangle=\hat{P}|\phi\rangle

Projection in VMC by restricting random walk to the symmetry sector

\hat{\mathcal{J}}|\psi\rangle = \exp\left(\sum_{p\sigma,q\gamma} v_{p\sigma,q\gamma}\hat{n}_{p\sigma}\hat{n}_{q\gamma}\right)|\psi\rangle

Correlates doublons and holons, can describe Mott insulating behavior

Symmetries: spin, complex conjugation, number, ...

Break the symmetry under a projector, to retain good quantum numbers

Jastrow factor:

d (Bohr) Exact (DMRG) Jastrow-KSzPfaffian Green's function MC
1.6 -0.5344 -0.5337 -0.5342
1.8 -0.5408 -0.5400 -0.5406
2.5 -0.5187 -0.5180 -0.5185

H\( _{50} \) linear chain (50e, 50o)

Hartree/particle

U/t Benchmark energy Jastrow-
KSzGHF
Green's function MC
2 -1.1962 -1.1920 -1.1939
4 -0.8620 -0.8566 -0.8598
8 -0.5237 -0.5183 -0.5221

2D Hubbard: 98 sites (half filling)

Density-density correlation function: 18 site 2D Hubbard model (\(U/t=4\))

Outline

  • Sampling and the sign problem in AFQMC 
  • Reducing noise using selected CI wave functions 
  • Convergence of phaseless errors
  • Jastrow symmetry projected states in VMC
  • Auxiliary field QMC
  • Variational MC
  • Ongoing work

Quantum spin liquid in \(\text{Ba}_4\text{Ir}_3\text{O}_{10}\)?

inverse susceptibility

heat capacity

  • Insulator with T-linear heat capacity
  • Interactions ~ 500 K but orders at 0.2 K
  • 2D but not geometrically frustrated

G. Cao, et al. (2020) 1901.04125

Ab initio wave function calculations

Face shared octahedra

Calculating valence electron wave functions for embedded clusters including all relevant interactions

Low lying energy levels:

Face shared

Corner shared

Different descriptions

Electron model:

\(H = t_{ij}c_i^{\dagger}c_j +v_{ijkl}c_i^{\dagger}c_j^{\dagger}c_lc_k + \dots\)

Spin model:

\(H = J_{ij}\mathbf{S}_i.\mathbf{S}_j + J_{ijkl}(\mathbf{S}_i.\mathbf{S}_j)(\mathbf{S}_k.\mathbf{S}_l) + \dots \)

Parton theory:

\(H = t_{ij}f_i^{\dagger}A_{ij}f_j + \dots\)

Future directions

  • Properties and excited states
  • Importance sampling and constraints in AFQMC, hybrid MD-MC
  • Variational CCSD, other wave functions like MPS, Jastrow in AFQMC
  • Spin liquid states in iridates using VMC

Thank you!

afqmc_vmc_3

By Ankit Mahajan

afqmc_vmc_3

  • 82