Machine Learning
how to begin to learn the machine in PHP
ARKADIUSZ KONDAS
Lead Software Architect
@ Proget Sp. z o.o.
Zend Certified Engineer
Code Craftsman
Blogger
Ultra Runner
@ ArkadiuszKondas
itcraftsman.pl
Zend Certified Architect
Agenda:
- Terminology
- Ways of learning
- Types of problems
- Example applications
Why Machine Learning?
Why Machine Learning?
- Develop systems that can automatically adapt and customize themselves to individual users.
- personalized news or mail filter
Why Machine Learning?
- Discover new knowledge from large databases (data mining).
- market basket analysis
Source: https://blogs.adobe.com/digitalmarketing/analytics/shopping-for-kpis-market-basket-analysis-for-web-analytics-data/
Why Machine Learning?
- Ability to mimic human and replace certain monotonous tasks - which require some intelligence.
- like recognizing handwritten characters
https://github.com/tensorflow/models/tree/master/im2txt
Why Machine Learning?
http://articles.concreteinteractive.com/nicole-kidmans-fake-nose/
Why Machine Learning?
- Develop systems that are too difficult/expensive to construct manually because they require specific detailed skills or knowledge tuned to a specific task (knowledge engineering bottleneck)
Why now?
Why now?
Data availability
internet, smart devices, IoT
Why now?
Computation power
CPU, GPU (TensorFlow)
Terminology
Terminology
Machine Learning
Learning is any process by which a system improves performance from experience
Terminology
Samples
a sample is an item to process (e.g. classify). It can be a document, a picture, a sound, a video, a row in database or CSV file, or whatever you can describe with a fixed set of features.
Terminology
Features
the number of features or distinct traits that can be used to describe each item in a quantitative manner
IBU: 45 (0 - 120) International Bittering Units
ALK: 4,7% (0% - 12%)
EXT: 12,0 (0 - 30) BLG, PLATO
EBC: 9 (0 - 80) European Brewery Convention
Terminology
Feature vector
is an n-dimensional vector of numerical features that represent some object.
$beer = [45, 4.7, 12.0, 9];
Terminology
Feature extraction
preparation of feature vector – transforms the data in the high-dimensional space to a space of fewer dimensions
$beer = [?, 7.0, 17.5, 9];
Terminology
Training / Evolution set
Set of data to discover potentially predictive relationships.
Ways of learning
Supervised learning
Source: http://www.simplilearn.com/what-is-machine-learning-and-why-it-matters-article
Supervised learning
Unsupervised learning
Source: http://www.simplilearn.com/what-is-machine-learning-and-why-it-matters-article
Unsupervised learning
Reinforcement learning
Source: http://www.simplilearn.com/what-is-machine-learning-and-why-it-matters-article
Reinforcement learning
Types of problems
https://github.com/php-ai/php-ml
PHP-ML - Machine Learning library for PHP
Classification
Source: http://www.boozology.com/beer-101-different-types-of-beer/
ibu,alk,ext,style,name
75,6.5,16,"American IPA","Szalony Alchemik"
28,4.2,12.5,"Summer Ale","Miss Lata"
40,4,10.5,"Session IPA","Tajemniczy Jeździec"
42,5.7,14.5,"Pils","Dziki Samotnik"
20,2.9,7.7,"Pszeniczne","Dębowa Panienka"
36,5.2,12.5,"Pszeniczne","Piękna Nieznajoma"
28,4.8,14.0,"Ale","Mała Czarna"
35,4.6,12.5,"American IPA","Nieproszony Gość"
20,5.2,12.5,"Pils","Ostatni sprawiedliwy"
30,4.8,12.5,"Pszeniczne","Dziedzic Pruski"
75,7.5,18.0,"Summer Ale","Bawidamek"
45,4.7,12.0,"Pils","Miś Wojtek"
20,5.2,13.0,"Pils","The Dancer"
30,4.7,12.0,"Pszeniczne","The Dealer"
120,8.9,19.0,"American IPA","The Fighter"
85,6.4,16.0,"American IPA","The Alchemist"
100,10.3,24,"Pszeniczne","The Gravedigger"
40,4.8,12.0,"American IPA","The Teacher"
75,7.0,16.0,"Ale","The Butcher"
80,6.7,16.0,"Ale","The Miner"
Classification
5.1,3.8,1.6,0.2,setosa
4.6,3.2,1.4,0.2,setosa
5.3,3.7,1.5,0.2,setosa
5,3.3,1.4,0.2,setosa
7,3.2,4.7,1.4,versicolor
6.4,3.2,4.5,1.5,versicolor
6.9,3.1,4.9,1.5,versicolor
5.5,2.3,4,1.3,versicolor
5.9,3,5.1,1.8,virginica
5.1,3.5,1.4,0.2,setosa
4.9,3,1.4,0.2,setosa
4.7,3.2,1.3,0.2,setosa
4.6,3.1,1.5,0.2,setosa
5,3.6,1.4,0.2,setosa
5.4,3.9,1.7,0.4,setosa
4.6,3.4,1.4,0.3,setosa
5,3.4,1.5,0.2,setosa
4.4,2.9,1.4,0.2,setosa
4.9,3.1,1.5,0.1,setosa
5.4,3.7,1.5,0.2,setosa
4.8,3.4,1.6,0.2,setosa
4.8,3,1.4,0.1,setosa
4.3,3,1.1,0.1,setosa
5.8,4,1.2,0.2,setosa
5.7,4.4,1.5,0.4,setosa
5.4,3.9,1.3,0.4,setosa
5.1,3.5,1.4,0.3,setosa
5.7,3.8,1.7,0.3,setosa
5.1,3.8,1.5,0.3,setosa
5.4,3.4,1.7,0.2,setosa
5.1,3.7,1.5,0.4,setosa
4.6,3.6,1,0.2,setosa
5.1,3.3,1.7,0.5,setosa
4.8,3.4,1.9,0.2,setosa
5,3,1.6,0.2,setosa
5,3.4,1.6,0.4,setosa
5.2,3.5,1.5,0.2,setosa
5.2,3.4,1.4,0.2,setosa
4.7,3.2,1.6,0.2,setosa
4.8,3.1,1.6,0.2,setosa
5.4,3.4,1.5,0.4,setosa
5.2,4.1,1.5,0.1,setosa
5.5,4.2,1.4,0.2,setosa
4.9,3.1,1.5,0.1,setosa
5,3.2,1.2,0.2,setosa
5.5,3.5,1.3,0.2,setosa
4.9,3.1,1.5,0.1,setosa
4.4,3,1.3,0.2,setosa
5.1,3.4,1.5,0.2,setosa
5,3.5,1.3,0.3,setosa
4.5,2.3,1.3,0.3,setosa
4.4,3.2,1.3,0.2,setosa
5,3.5,1.6,0.6,setosa
5.1,3.8,1.9,0.4,setosa
4.8,3,1.4,0.3,setosa
5.1,3.8,1.6,0.2,setosa
4.6,3.2,1.4,0.2,setosa
5.3,3.7,1.5,0.2,setosa
5,3.3,1.4,0.2,setosa
7,3.2,4.7,1.4,versicolor
6.4,3.2,4.5,1.5,versicolor
6.9,3.1,4.9,1.5,versicolor
5.5,2.3,4,1.3,versicolor
6.5,2.8,4.6,1.5,versicolor
5.7,2.8,4.5,1.3,versicolor
6.3,3.3,4.7,1.6,versicolor
4.9,2.4,3.3,1,versicolor
6.6,2.9,4.6,1.3,versicolor
5.2,2.7,3.9,1.4,versicolor
5,2,3.5,1,versicolor
5.9,3,4.2,1.5,versicolor
6,2.2,4,1,versicolor
6.1,2.9,4.7,1.4,versicolor
5.6,2.9,3.6,1.3,versicolor
6.7,3.1,4.4,1.4,versicolor
5.6,3,4.5,1.5,versicolor
5.8,2.7,4.1,1,versicolor
6.2,2.2,4.5,1.5,versicolor
5.6,2.5,3.9,1.1,versicolor
5.9,3.2,4.8,1.8,versicolor
6.1,2.8,4,1.3,versicolor
6.3,2.5,4.9,1.5,versicolor
6.1,2.8,4.7,1.2,versicolor
6.4,2.9,4.3,1.3,versicolor
6.6,3,4.4,1.4,versicolor
6.8,2.8,4.8,1.4,versicolor
6.7,3,5,1.7,versicolor
6,2.9,4.5,1.5,versicolor
5.7,2.6,3.5,1,versicolor
5.5,2.4,3.8,1.1,versicolor
5.5,2.4,3.7,1,versicolor
5.8,2.7,3.9,1.2,versicolor
6,2.7,5.1,1.6,versicolor
5.4,3,4.5,1.5,versicolor
6,3.4,4.5,1.6,versicolor
6.7,3.1,4.7,1.5,versicolor
6.3,2.3,4.4,1.3,versicolor
5.6,3,4.1,1.3,versicolor
5.5,2.5,4,1.3,versicolor
5.5,2.6,4.4,1.2,versicolor
6.1,3,4.6,1.4,versicolor
5.8,2.6,4,1.2,versicolor
5,2.3,3.3,1,versicolor
5.6,2.7,4.2,1.3,versicolor
5.7,3,4.2,1.2,versicolor
5.7,2.9,4.2,1.3,versicolor
6.2,2.9,4.3,1.3,versicolor
5.1,2.5,3,1.1,versicolor
5.7,2.8,4.1,1.3,versicolor
6.3,3.3,6,2.5,virginica
5.8,2.7,5.1,1.9,virginica
7.1,3,5.9,2.1,virginica
6.3,2.9,5.6,1.8,virginica
6.5,3,5.8,2.2,virginica
7.6,3,6.6,2.1,virginica
4.9,2.5,4.5,1.7,virginica
7.3,2.9,6.3,1.8,virginica
6.7,2.5,5.8,1.8,virginica
7.2,3.6,6.1,2.5,virginica
6.5,3.2,5.1,2,virginica
6.4,2.7,5.3,1.9,virginica
6.8,3,5.5,2.1,virginica
5.7,2.5,5,2,virginica
5.8,2.8,5.1,2.4,virginica
6.4,3.2,5.3,2.3,virginica
6.5,3,5.5,1.8,virginica
7.7,3.8,6.7,2.2,virginica
7.7,2.6,6.9,2.3,virginica
6,2.2,5,1.5,virginica
6.9,3.2,5.7,2.3,virginica
5.6,2.8,4.9,2,virginica
7.7,2.8,6.7,2,virginica
6.3,2.7,4.9,1.8,virginica
6.7,3.3,5.7,2.1,virginica
7.2,3.2,6,1.8,virginica
6.2,2.8,4.8,1.8,virginica
6.1,3,4.9,1.8,virginica
6.4,2.8,5.6,2.1,virginica
7.2,3,5.8,1.6,virginica
7.4,2.8,6.1,1.9,virginica
7.9,3.8,6.4,2,virginica
6.4,2.8,5.6,2.2,virginica
6.3,2.8,5.1,1.5,virginica
6.1,2.6,5.6,1.4,virginica
7.7,3,6.1,2.3,virginica
6.3,3.4,5.6,2.4,virginica
6.4,3.1,5.5,1.8,virginica
6,3,4.8,1.8,virginica
6.9,3.1,5.4,2.1,virginica
6.7,3.1,5.6,2.4,virginica
6.9,3.1,5.1,2.3,virginica
5.8,2.7,5.1,1.9,virginica
6.8,3.2,5.9,2.3,virginica
6.7,3.3,5.7,2.5,virginica
6.7,3,5.2,2.3,virginica
6.3,2.5,5,1.9,virginica
6.5,3,5.2,2,virginica
6.2,3.4,5.4,2.3,virginica
5.9,3,5.1,1.8,virginica
Classification
Classification
use Phpml\Classification\KNearestNeighbors;
use Phpml\CrossValidation\RandomSplit;
use Phpml\Dataset\Demo\IrisDataset;
use Phpml\Metric\Accuracy;
$dataset = new IrisDataset();
$split = new RandomSplit($dataset);
$classifier = new KNearestNeighbors();
$classifier->train(
$split->getTrainSamples(),
$split->getTrainLabels()
);
$predicted = $classifier->predict($split->getTestSamples());
echo sprintf("Accuracy: %s",
Accuracy::score($split->getTestLabels(), $predicted)
);
Regression
Miles Price
9300 7100
10565 15500
15000 4400
15000 4400
17764 5900
57000 4600
65940 8800
73676 2000
77006 2750
93739 2550
146088 960
153260 1025
Regression
use Phpml\Regression\LeastSquares;
$samples = [[9300], [10565], [15000], [15000], [17764], [57000], [65940], [73676], [77006], [93739], [146088], [153260]];
$targets = [7100, 15500, 4400, 4400, 5900, 4600, 8800, 2000, 2750, 2550, 960, 1025];
$regression = new LeastSquares();
$regression->train($samples, $targets);
$regression->getCoefficients();
$regression->getIntercept();
$price = $regression->predict([35000]);
// $regression->getR2(); not implemented
Clustering
338.04200965504333, 340.96099477471597
325.29926486005047, 351.5486679994454
578.4499100418299, 337.60567937295593
636.6010916396216, 337.1655634700131
463.61495372140104, 87.30781540000328
309.68095048053567, 354.79933984182196
569.0001374385495, 330.5023290963775
304.07877801351003, 382.1851806595662
346.4318094249369, 310.88359489761524
334.2663485285672, 344.5296863511734
299.4530082502729, 372.35350555098955
316.6104171289118, 375.41602001034096
591.0246508090806, 367.94797729389813
444.34991671401906, 118.45496995943586`
433.8227728530299, 71.72222842689047
444.1053454998834, 88.83183753321407
324.12063379205586, 395.6336572036508
301.51836226006776, 386.3882932443487
290.99261735355236, 344.87568081586755
581.4049866784304, 371.3100282327115
337.3816662630702, 355.6395349632366
498.01819058795814, 108.48920265724882
633.0636222044708, 326.3110287785337
626.3134372729498, 348.71913526515345
445.42859704368556, 75.27305470137435
306.81410851018825, 378.7736686118892
439.09865975254024, 76.66971977093272
568.7282712141936, 358.41194912805474
484.31765468419354, 106.46382764011003
449.07188156546613, 124.09596458236962
436.2664927059137, 65.18430339142009
317.17960432822883, 383.0054323942884
617.9759662145998, 344.4047557583218
616.3127444692847, 370.06136729095704
321.7158651152831, 362.67159106183084
346.4608886567032, 314.51981989975513
618.2526036244853, 357.0196182265154
590.7945765999675, 324.6498992628791
449.38056945433436, 118.60287536865769
472.066687997031, 80.37719565025702
294.3118847109533, 353.4865615033949
478.97062534720897, 95.70649681953358
567.7841441303771, 320.75547779107023
299.2327209106677, 352.1922118198445
292.16634675253886, 373.83696459447344
461.85741799708296, 117.44946869574665
299.07107909731684, 335.77658215111626
319.910986973631, 384.62564615284293
471.30428556038567, 106.28818985606335
559.5279075420794, 310.54351840325637
634.3642075285027, 335.5029769601599
439.8317690837323, 99.23099273365165
596.8791693350236, 381.59392224565795
604.1516435053849, 405.67736285856677
420.9873305290532, 90.75617345698856
437.59770111677204, 102.76018890480634
458.53847739928796, 82.72050379444829
608.088322572504, 376.039913501605
307.97097959822054, 324.722286003262
312.8947110796786, 342.3285548762767
277.14935633237906, 335.3623461390265
583.5560528138124, 359.803102482816
281.5020161290845, 317.9752805728433
560.5928946888674, 391.38894054488634
588.8035684901414, 318.5353923361487
411.6735472125374, 101.13213926573758
335.27072033693, 350.83097073880435
587.7683201110738, 376.82513508927434
611.1566402943419, 357.26648853430015
427.2108675492812, 123.9355948432858
299.39380762681003, 355.28019695638045
602.0009869194577, 347.296571408476
486.3169307223569, 83.6416789424083
325.289213170922, 363.1833076023479
442.75071528370154, 87.48454115478904
330.48743133797694, 379.067400358574
472.6320292955885, 90.23629371803918
587.4838699987308, 380.34546667208446
588.1129869337481, 381.2727150846652
591.2110482590026, 356.4409869262666
576.6265527643077, 365.78582049509833
593.9074313070807, 391.83088813346376
608.1987741896169, 418.608525504521
444.1151674614539, 104.33389362734681
290.6610271195223, 335.67104011710535
589.4047360621089, 334.42201557780413
434.8858913992243, 59.69518765296425
295.2734178813325, 369.4223946120387
585.5138327920143, 371.80999860054123
329.18314608591544, 367.39749113835285
600.0886391882641, 350.76731943539863
425.5700946282092, 75.53475894151018
573.7681709045746, 386.07330136408166
300.05777637102244, 372.88029897823975
448.8305033529923, 63.695405132884275
587.6650652701011, 368.9692221019065
490.8909673624537, 96.29103599971592
330.6332057590241, 304.0525581468305
588.5894529768525, 326.3580453764175
589.8695007238415, 366.44966849044806
327.5091798778813, 404.35590896990914
Clustering
Clustering
Clustering
Clustering
Clustering
use Phpml\Clustering\KMeans;
$samples = [
[1, 1], [8, 7], [1, 2],
[7, 8], [2, 1], [8, 9]
];
$kmeans = new KMeans(2);
$clusters = $kmeans->cluster($samples);
$clusters = [
[[1, 1], [1, 2], [2, 1]],
[[8, 7], [7, 8], [8, 9]]
];
Preprocessing
use Phpml\Preprocessing\Imputer;
use Phpml\Preprocessing\Imputer\Strategy\MeanStrategy;
$data = [
[1, null, 3, 4],
[4, 3, 2, 1],
[null, 6, 7, 8],
[8, 7, null, 5],
];
$imputer = new Imputer(
null, new MeanStrategy(), Imputer::AXIS_COLUMN, $data
);
$imputer->transform($data);
$data = [
[1, 5.33, 3, 4],
[4, 3, 2, 1],
[4.33, 6, 7, 8],
[8, 7, 4, 5],
];
Feature Extraction
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WhitespaceTokenizer;
$samples = [
'Lorem ipsum dolor sit amet dolor',
'Mauris placerat ipsum dolor',
'Mauris diam eros fringilla diam',
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
$vectorizer->fit($samples);
$vectorizer->getVocabulary()
$vectorizer->transform($samples);
$tokensCounts = [
[0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1, 5 => 0, 6 => 0, 7 => 0, 8 => 0, 9 => 0],
[0 => 0, 1 => 1, 2 => 1, 3 => 0, 4 => 0, 5 => 1, 6 => 1, 7 => 0, 8 => 0, 9 => 0],
[0 => 0, 1 => 0, 2 => 0, 3 => 0, 4 => 0, 5 => 1, 6 => 0, 7 => 2, 8 => 1, 9 => 1],
];
Model selection
use Phpml\CrossValidation\RandomSplit;
use Phpml\CrossValidation\StratifiedRandomSplit;
use Phpml\Dataset\ArrayDataset;
$dataset = new ArrayDataset(
$samples = [[1], [2], [3], [4]],
$labels = ['a', 'a', 'b', 'b']
);
$randomSplit = new RandomSplit($dataset, 0.5);
$dataset = new ArrayDataset(
$samples = [[1], [2], [3], [4], [5], [6], [7], [8]],
$labels = ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b']
);
$split = new StratifiedRandomSplit($dataset, 0.5);
Workflow
$transformers = [
new Imputer(null, new MostFrequentStrategy()),
new Normalizer(),
];
$estimator = new SVC();
$samples = [
[1, -1, 2],
[2, 0, null],
[null, 1, -1],
];
$targets = [
4,
1,
4,
];
$pipeline = new Pipeline($transformers, $estimator);
$pipeline->train($samples, $targets);
$predicted = $pipeline->predict([[0, 0, 0]]);
// $predicted == 4
Example applications
Beer judge
ibu,alk,ext,score,name
75,6.5,16,7,"Szalony Alchemik"
28,4.2,12.5,6,"Miss Lata"
40,4,10.5,7,"Tajemniczy Jeździec"
42,5.7,14.5,6,"Dziki Samotnik"
20,2.9,7.7,4,"Dębowa Panienka"
36,5.2,12.5,5,"Piękna Nieznajoma"
28,4.8,14.0,3,"Mała Czarna"
35,4.6,12.5,7,"Nieproszony Gość"
20,5.2,12.5,8,"Ostatni sprawiedliwy"
30,4.8,12.5,6,"Dziedzic Pruski"
75,7.5,18.0,9,"Bawidamek"
45,4.7,12.0,8,"Miś Wojtek"
20,5.2,13.0,8,"The Dancer"
30,4.7,12.0,4,"The Dealer"
120,8.9,19.0,3,"The Fighter"
85,6.4,16.0,9,"The Alchemist"
100,10.3,24,4,"The Gravedigger"
40,4.8,12.0,8,"The Teacher"
75,7.0,16.0,7,"The Butcher"
80,6.7,16.0,5,"The Miner"
Beer judge
use Phpml\Classification\SVC;
use Phpml\CrossValidation\StratifiedRandomSplit;
use Phpml\Dataset\CsvDataset;
use Phpml\Metric\Accuracy;
use Phpml\SupportVectorMachine\Kernel;
$dataset = new CsvDataset('examples/beers.csv', 3);
$split = new StratifiedRandomSplit($dataset, 0.1);
$classifier = new SVC(Kernel::RBF);
$classifier->train($split->getTrainSamples(), $split->getTrainLabels());
$predicted = $classifier->predict($split->getTestSamples());
echo sprintf("Accuracy: %s\n", Accuracy::score($split->getTestLabels(), $predicted));
$newBeer = [20, 2.5, 7];
echo sprintf("New beer score: %s\n", $classifier->predict($newBeer));
Language recognition
// languages.csv
"Hello, do you know what time the movie is tonight?","english"
"I am calling to make reservations","english"
"I would like to know if it is at all possible to check in","english"
"What time does the swimming pool open?","english"
"Where is the games room?","english"
"We must call the police.","english"
"How many pupils are there in your school?","english"
"Twenty litres of unleaded, please.","english"
"Is it near here?","english"
"Je voudrais une boîte de chocolates.","french"
"Y a-t-il un autre hôtel près d'ici?","french"
"Vérifiez la batterie, s'il vous plaît.","french"
"La banque ouvre à quelle heure?","french"
"Est-ce que je peux l'écouter?","french"
"Vous devez faire une déclaration de perte.","french"
"Combien des élèves y a-t-il dans votre collège?","french"
"Est-ce qu-il ya un car qui va à l'aéroport?","french"
"Nous voudrions rester jusqu'à Dimanche prochain.","french"
"Je ne comprends pas.","french"
"Voici une ordonnance pour des comprimés.","french"
"Je n'ai qu'un billet de cinquante francs.","french"
"À quelle heure commence le dernière séance?","french"
"Faut-il changer?","french"
"Il n'avait pas la priorité.","french"
"Puis-je prendre les places à l'avance?","french"
"Elle a trente et un ans.","french"
"Pour aller à la pharmacie, s'il vous plaît?","french"
"Voulez-vous me peser ce colis, s'il vous plaît.","french"
"Ciao, ti va di andare al cinema?","italian"
"Mi sai dire quando aprono il negozio?","italian"
"Quando c'è l'ultimo autobus?","italian"
"Lo posso provare addosso?","italian"
"C'è una presa elettrica per il nostro caravan?","italian"
"Vorrei una scatola di cioccolatini.","italian"
"Non e' stata colpa mia.","italian"
Language recognition
<?php
$dataset = new CsvDataset('examples/languages.csv', 1);
$vectorizer = new TokenCountVectorizer(new WordTokenizer());
$samples = $vectorizer->transform($dataset->getSamples());
$dataset = new ArrayDataset($samples, $dataset->getLabels());
$randomSplit = new RandomSplit($dataset, 0.3);
$classifier = new SVC(Kernel::RBF, 100);
$classifier->train(
$randomSplit->getTrainSamples(),
$randomSplit->getTrainLabels()
);
$predictedLabels = $classifier->predict(
$randomSplit->getTestSamples()
);
echo Accuracy::score($randomSplit->getTestLabels(), $predictedLabels);
Flappy Learning
https://github.com/xviniette/FlappyLearning
Flappy Learning
var inputs = [
this.birds[i].y / this.height,
nextHoll
];
var res = this.gen[i].compute(inputs);
if(res > 0.5){
this.birds[i].flap();
}
if(this.birds[i].isDead(this.height, this.pipes)){
this.birds[i].alive = false;
this.alives--;
Neuvol.networkScore(this.gen[i], this.score);
if(this.isItEnd()){
this.start();
}
}
Summary
Summary
- the most important is question, data is secondary (but also important)
- many algorithms and techniques
- application can be very simple but also extremely sophiticated
- sometimes difficult to find correct answer
- base math skills are important
PHP 7.0
206,128 instances classified in 30 seconds
(6,871 per second)
https://github.com/syntheticminds/php7-ml-comparison
Python 2.7
106,879 instances classified in 30 seconds
(3,562 per second)
NodeJS v5.11.1
245,227 instances classified in 30 seconds
(8,174 per second)
Java 8
16,809,048 instances classified in 30 seconds
(560,301 per second)
PHP 7.1
302,931 instances classified in 30 seconds
(10,098 per second)
Where to begin?
kaggle.com
Q&A
Thanks for listening
@ ArkadiuszKondas
https://slides.com/arkadiuszkondas
https://github.com/akondas
Machine Learning - how to begin to learn the machine in PHP 1.1
By Arkadiusz Kondas
Machine Learning - how to begin to learn the machine in PHP 1.1
The main goal of Machine Learning is to create intelligent systems that can improve and acquire new knowledge through input. In practice this translates into the use of one of hundreds of different algorithms available. Based on the PHP-ML library I want to present different classes of problems and how to use them. I will also show you how to build an entire pipeline by which we go through all the ML stages: preprocessing, choosing algorithms, and evaluating its effectiveness.
- 1,284