建國中學

暑假地球科學讀書會

大氣動力學

Presenter: 122527 Brine

Index

Forces

  • pressure gradient force, PGF
  • gravitational force
  • viscosity
  • friction

apparent Forces

  • aka pseudo force
  • centrifugal force
  • coriolis force

whiteboard time

Drawing on computer is hard. Have mercy on me.

Pressure gradient force

  • assume there's an air parcel
a_x = -\frac{1}{\rho}\frac{\partial P}{\partial x\ }
a_y = -\frac{1}{\rho}\frac{\partial P}{\partial y\ }
a_z = -\frac{1}{\rho}\frac{\partial P}{\partial z\ }

Gravitational force

\vec{F_g} = \frac{GMm}{r^2}(\frac{\vec r}{r})
\frac{\vec{F_g}}{m} = \frac{GM}{r^2}(\frac{\vec r}{r}) \equiv \vec {g^*}

Centrifugal Force

\vec g = \vec{g^*} + \Omega^2 \vec R

Viscosity

x is parallel to the line of latitude

y is parallel to the line of longitude

z is the altitude

\dot x \leftrightarrow u \\ \dot y \leftrightarrow v \\ \dot z \leftrightarrow w
F = \mu A \frac{\Delta u}{\Delta z}

(observed)

\tau_{z \to x} = \large \frac{F}{A} \normalsize = \mu \large \frac{\partial u}{\partial z}

Viscosity

a_{z \to x} = \frac{(\tau_u - \tau_d)\Delta zA \\}{m}
\\ = \frac{\frac{\partial}{\partial z} \tau_{z \to x} \Delta x \Delta y \Delta z}{m}
\\ = \frac{1}{\rho} \frac{\partial}{\partial z} \tau_{z \to x}
\\ = \frac{\mu}{\rho} \frac{\partial}{\partial z} \frac{\partial u}{\partial z}
\\ = \nu \frac{\partial^2 u}{\partial z^2}
a_x = a_{x \to x} + a_{y \to x} + a_{z \to x}
= \nu [\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}]
= \nu \nabla^2 u
\nabla = \displaystyle \sum_{i=1}^n \vec e_i {\partial \over \partial x_i} = \left({\partial \over \partial x_1}, \ldots, {\partial \over \partial x_n} \right)

coriolis force

Using simple calculus

\delta P \approx P\sin\theta\omega\delta t
\frac{DP}{Dt} = \omega \times P + \frac{dP}{dt}
\frac{Dr}{Dt} = \omega \times r + \frac{dr}{dt}
\frac{D^2r}{Dt^2} = \omega \times \frac{Dr}{Dt} + \frac{Dv}{Dt}

coriolis force

Using simple calculus

coriolis force

Using simple calculus

\frac{Dr}{Dt} = \omega \times r + v
\frac{D^2r}{Dt^2} = \omega \times \frac{Dr}{Dt} + \frac{Dv}{Dt}
\frac{DP}{Dt} = \omega \times P + \frac{dP}{dt}
\frac{D^2r}{Dt^2} = \omega \times (\omega \times r + v) + \omega \times v + \frac{dv}{dt}
A = \frac{dv}{dt} + 2 \omega \times v + \omega^2r

coriolis force

Using simple calculus

\frac{Dr}{Dt} = \omega \times r + v
\frac{D^2r}{Dt^2} = \omega \times \frac{Dr}{Dt} + \frac{Dv}{Dt}
\frac{DP}{Dt} = \omega \times P + \frac{dP}{dt}
\frac{D^2r}{Dt^2} = \omega \times (\omega \times r + v) + \omega \times v + \frac{dv}{dt}
A = \frac{dv}{dt} + 2 \omega \times v + \omega^2r

coriolis force

Another approach - u

(\Omega + \frac{u}{R})^2 \vec{R}
= \Omega^2 \vec{R} + 2\Omega u \frac{\vec R}{R} + (\frac{u}{R})^2 \vec R
2 \Omega u \cos \phi
-2 \Omega u \sin \phi

coriolis force

Another approach - v

conservation\ of\ angular\ momentum
\Omega R^2 = (\Omega + \frac{\delta u}{R + \delta R})(R + \delta R)^2
\delta u \approx -2\Omega\delta R
\delta R = \delta y \sin \phi
\frac{du}{dt} = 2\Omega v \sin \phi

coriolis force

Another approach - w

conservation\ of\ angular\ momentum
\Omega R^2 = (\Omega + \frac{\delta u}{R + \delta R})(R + \delta R)^2
\delta u \approx -2\Omega\delta R
\delta R = \delta z \cos \phi
\frac{du}{dt} = -2\Omega w \cos \phi

coriolis force

Another approach - conclusion

\Biggl \{
\frac{d\vec V}{dt}
\Large\frac{du}{dt}\normalsize = 2\Omega v \sin \phi - 2 \Omega w \cos \phi
\Large\frac{dv}{dt}\normalsize = - 2 \Omega u \sin \phi
\Large\frac{dw}{dt}\normalsize = 2 \Omega u \cos \phi

coriolis force

Another approach - conclusion

\Biggl \{
\frac{d\vec V}{dt}
\Large\frac{du}{dt}\normalsize = 2\Omega v \sin \phi - 2 \Omega w \cos \phi
\Large\frac{dv}{dt}\normalsize = - 2 \Omega u \sin \phi
\Large\frac{dw}{dt}\normalsize = 2 \Omega u \cos \phi
f \equiv 2 \Omega\sin\phi

Equations

Introduction to some of the equations

Motion equatoins

\frac{d \vec V}{dt} = \vec g - \frac{1}{\rho} \nabla P + \nu \nabla^2 \vec V - 2 \vec \Omega \times \vec V
-2\vec \Omega \times \vec V = -2\Omega \begin{vmatrix} \hat i & \hat j & \hat k\\ 0 & \cos \phi & \sin \phi\\ u & v & w \end{vmatrix}

spherical coordinate system

(x, y, z) \rightarrow (\theta( sometimes\ \lambda), \phi, r)
\Biggl \{
dx = r \cos \phi d\theta
dy = rd\phi
dz = dr
\vec V = (u, v, w) = \hat i u + \hat j v + \hat k w

spherical coordinate system

\frac{d(\hat i u)}{dt} = \hat i \frac{du}{dt} + u \frac{d\hat i}{dt}

spherical coordinate system

\frac{d(\hat i u)}{dt} = \hat i \frac{du}{dt} + u \frac{d\hat i}{dt}
\frac{d\hat i}{dt} = \frac{\partial \hat i}{\partial t} + u \frac{\partial \hat i}{\partial x}
\Large|\frac{\partial \hat i}{\partial x}| \normalsize= \displaystyle \lim_{\delta x \to 0} \frac{|\delta i|}{\delta x} = \frac{|\hat i|\delta \theta}{r \cos \phi \delta \theta} = \frac{1}{r\cos \phi}
\delta \hat i = \sin \phi \hat j - \cos \phi \hat k
\delta \hat i
\sin \phi \hat j
- \cos \phi \hat k

spherical coordinate system

\frac{d(\hat i u)}{dt} = \hat i \frac{du}{dt} + u \frac{d\hat i}{dt}
\frac{d\hat i}{dt} = \frac{\partial \hat i}{\partial t} + u \frac{\partial \hat i}{\partial x}
\Large|\frac{\partial \hat i}{\partial x}| \normalsize= \displaystyle \lim_{\delta x \to 0} \frac{|\delta i|}{\delta x} = \frac{|\hat i|\delta \theta}{r \cos \phi \delta \theta} = \frac{1}{r\cos \phi}
u \frac{d\hat i}{dt} = u^2 \frac{\partial \hat i}{\partial x} = \frac{u^2}{r} \tan \phi \hat j - \frac{u^2}{r} \hat k
\frac{D\vec V_y}{Dt} = (\frac{Du}{Dt} + \frac{u^2}{r} \tan \phi + \frac{vw}{r}) \hat j
= - \frac{1}{\rho}\frac{\partial P}{\partial y} - 2\Omega u \sin\phi + F_y
\delta \hat i = \sin \phi \hat j - \cos \phi \hat k
\delta \hat i
\sin \phi \hat j
- \cos \phi \hat k

HORIZONTAL Approximation

geostrophic\ wind
-fv \approx -\frac{1}{\rho}\frac{\partial P}{\partial x} \rightarrow v \approx \frac{1}{f\rho}\frac{\partial P}{\partial x}
fu \approx -\frac{1}{\rho}\frac{\partial P}{\partial x} \rightarrow u \approx \frac{1}{f\rho}\frac{\partial P}{\partial y}

HORIZONTAL Approximation

geostrophic\ wind
-fv \approx -\frac{1}{\rho}\frac{\partial P}{\partial x} \rightarrow v \approx \frac{1}{f\rho}\frac{\partial P}{\partial x}
fu \approx -\frac{1}{\rho}\frac{\partial P}{\partial x} \rightarrow u \approx \frac{1}{f\rho}\frac{\partial P}{\partial y}
\frac{Du}{Dt} \approx - \frac{1}{\rho}\frac{\partial P}{\partial y} - \small{2\Omega u \sin\phi} = - f(u - u_g)
= - \frac{1}{\rho}\frac{\partial P}{\partial y} - \small{2\Omega u \sin\phi} + F_y
\longrightarrow
(\frac{Du}{Dt} + \frac{u^2}{r} \small{\tan \phi} + \frac{vw}{r}) \hat j

Rossby number

  • a tool to see whether the approximation is valid
Ro = \frac{a_{total}}{a_{coriolis}} = \frac{\frac{Du}{Dt}}{fu} = \frac{u / (l / u)}{fu} = \frac{u}{fl}
Ro < \frac{1}{10} \leftrightarrow valid

VERTICAL Approximation

\frac{dw}{dt} = - g - \frac{1}{\rho}\frac{\partial P}{\partial z}
\rightarrow
\frac{dw}{dt} \approx 0 \leftrightarrow equilibrium

tiny turbulence

g \approx - \frac{1}{\rho_0}\frac{\partial P_0}{\partial z}
P = P_0(z) + P'(x,y,z,t)
\rho = \rho_0(z) + \rho'(x,y,z,t)
\frac{dw}{dt} = - g - \frac{1}{\rho_0 + \rho'}\frac{\partial(P_0 + P')}{\partial z}
\forall \small x\ s.t.\ 0 < x << 1,\ \frac{1}{1 + x} \approx 1 - x
\frac{dw}{dt} \approx - \frac{1}{\rho_0}\frac{\partial P'}{\partial z} - \frac{\rho'}{\rho_0}g

continuity equation

x_{in} - x_{out} = - (\frac{\partial}{\partial x}\delta x) \rho u \delta y\delta z
...
- (\frac{\partial}{\partial x} \rho u + \frac{\partial}{\partial y} \rho v + \frac{\partial}{\partial z} \rho w)\delta x\delta y\delta z = \frac{\partial \rho}{\partial t} \delta x\delta y\delta z
\frac{\partial \rho}{\partial t} +\small \nabla \cdot (\rho\vec V) = 0 \leftrightarrow \frac{D\rho}{Dt}+ \small \rho \nabla\cdot \vec V = 0
\nabla \cdot \vec v = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} +\frac{\partial v_z}{\partial z}...

another way

M = \rho V
\frac{DM}{Dt} = 0
\frac{1}{M}\frac{D}{Dt}\small(\rho V) = 0
\frac{1}{\rho}\frac{D\rho}{Dt}+ \frac{1}{V}\frac{DV}{Dt}\small = 0
\frac{1}{\rho}\frac{D\rho}{Dt}+ \small \nabla\cdot \vec V = 0
(\frac{\partial }{\partial x} xyz = yz)\\ (\frac{\partial x}{\partial t}yz + \frac{\partial y}{\partial t}xz + \frac{\partial y}{\partial t}xz = \frac{DV}{Dt})

a bit of Manoeuvre 

\frac{1}{\rho}\frac{D\rho}{Dt}+ \small \nabla\cdot \vec V = 0
\rho = \rho_0(z) + \rho'(x,y,z,t)
\frac{1}{\rho_0+\rho'}\frac{D(\rho_0+\rho')}{Dt} + \nabla \cdot \vec V = 0
\large\frac{1}{\rho_0}\normalsize(\frac{\partial \rho'}{\partial t} + \small\vec V \cdot \nabla \rho') + \large\frac{1}{\rho_0}\frac{dz}{dt}\frac{d\rho_0}{dz} + \small\nabla \cdot \vec V \approx 0
\large\frac{1}{\rho_0}\normalsize w\frac{d\rho_0}{dz} + \small\nabla \cdot \vec V \approx 0
\frac{d\rho_0}{dz}w + \rho_0\small\nabla \cdot \vec V \approx 0
\frac{\partial\rho_0}{\partial x}u +\frac{\partial\rho_0}{\partial y}v +\frac{\partial \rho_0}{\partial z}w + \rho_0 \frac{\partial u}{\partial x}+\rho_0 \frac{\partial v}{\partial y}+\rho_0 \frac{\partial w}{\partial z}+ \approx 0
\nabla \cdot (\rho_0 \vec V) \approx 0

How similar 

\nabla \cdot (\rho_0 \vec V) \approx 0
incompressible\ flow
\frac{1}{\rho}\frac{D\rho}{Dt}+ \small \nabla\cdot \vec V = 0
\delta \rho = 0
\small \nabla\cdot \vec V = 0
\small \nabla\cdot (\rho \vec V) = 0
\frac{d\rho_0}{dz}w + \rho_0\small\nabla \cdot \vec V \approx 0

Application

What can we do with all of that

Weather forecasting

  • of course
  • many models use the equations mentioned above
  • prediction for weather / climate

what if

  • predict what the world will look like with different conditions

thank you

I've got nothing left lmao

大氣動力學 Atmospheric Dynamics

By Brine

大氣動力學 Atmospheric Dynamics

The study of motion systems of meteorological importance, integrating observations at multiple locations and times and theories.

  • 146