Bring Your Own Effect
Chris Birchall
http://lambdale.org/
@lambd_ale
1st September 2018
The good old days
interface Cache<K, V> {
public Optional<V> get(K key);
public void put(K key, V value);
}
trait Cache[K, V] {
def get(key: K): Future[Option[V]]
def put(key: K, value: V): Future[Unit]
}
trait AsyncCache[K, V] {
def get(key: K): Future[Option[V]]
def put(key: K, value: V): Future[Unit]
}
trait SyncCache[K, V] {
def get(key: K): Option[V]
def put(key: K, value: V): Unit
}
class RedisCache extends AsyncCache { ...}
class CaffeineCache extends SyncCache { ... }
trait Cache[K, V] {
def get(key: K): Future[Option[V]]
def put(key: K, value: V): Future[Unit]
}
def getSync[K, V](cache: Cache[K, V])
(key: K): Option[V] =
Await.result(cache.get(key), Duration.Inf)
def putSync[K, V](cache: Cache[K, V])
(key: K, value: V): Option[V] =
Await.result(cache.put(key, value), Duration.Inf)
Source: Wikipedia
Source: pxhere.com
trait Cache[K, V] {
def get[F[_]](key: K): F[Option[V]]
def put[F[_]](key: K, value: V): F[Unit]
}
val cache: Cache[String, Int] = ...
val future: Future[Option[Int]] = cache.get[Future]("foo")
val task: Task[Option[Int]] = cache.get[Task]("foo")
val plainOldValue: Option[Int] = cache.get[???]("foo")
val plainOldValue: Option[Int] = cache.get[Id]("foo")
type Id[A] = A
class MemcachedCache[K, V] extends Cache[K, V] {
val memcachedClient = ...
def get[F[_]](key: K): F[Option[V]] = ???
def put[F[_]](key: K, value: V): F[Unit] = ???
}
class MemcachedCache[K, V] extends Cache[K, V] {
val memcachedClient = ...
def get[F[_]](key: K)
(implicit tc: TypeClass[F]): F[Option[V]] = {
// TODO cache lookup!
tc.pure(None)
}
def put[F[_]](key: K, value: V)
(implicit tc: TypeClass[F]): F[Unit] = {
// TODO cache write!
tc.pure(())
}
}
What typeclass do I need?
- Depends on what your code needs to do
- Use the least powerful tool for the job
Functor
Applicative
Monad
MonadError
Sync
Async
def map[A,B](fa: F[A])(f: A => B): F[B]
def pure[A](a: A): F[A]
def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B]
def raiseError[A](e: Throwable): F[A]
def handleError[A](fa: F[A])(f: Throwable => A): F[A]
def delay[A](thunk: => A): F[A]
def async[A](
register: (Either[Throwable, A] => Unit) => Unit): F[A]
Aside: "non-blocking"/"async" I/O
Blocking the current thread:
val x: Result = makeRemoteApiCall()
val x: Future[Result] = Future { makeRemoteApiCall() }
Still blocking, but on a different thread:
val x: Unit = makeRemoteApiCall(callback = {
case Left(err) => println("Oh no!")
case Right(result) => println("Yay!")
})
Callback-based async I/O:
Aside: "non-blocking"/"async" I/O
Callback-based async I/O
Future
Blocking the current thread
(wrap in Await)
(wrap in Future)
(use callback to complete a Promise)
ScalaCache's Async typeclass
trait Async[F[_]] {
def pure[A](a: A): F[A]
def map[A, B](fa: F[A])(f: A => B): F[B]
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
def raiseError[A](t: Throwable): F[A]
def handleNonFatal[A](fa: => F[A])(f: Throwable => A): F[A]
def delay[A](thunk: => A): F[A]
def suspend[A](thunk: => F[A]): F[A]
def async[A](register: (Either[Throwable, A] => Unit) => Unit): F[A]
}
class AsyncForFuture(implicit ec: ExecutionContext)
extends Async[Future] {
def pure[A](a: A): Future[A] = Future.successful(a)
def map[A, B](fa: Future[A])(f: A => B): Future[B] = fa.map(f)
...
def async[A](register: (Either[Throwable, A] => Unit) => Unit)
: Future[A] = {
val promise = Promise[A]()
register {
case Left(e) => promise.failure(e)
case Right(x) => promise.success(x)
}
promise.future
}
}
Example instance: Future
class CaffeineCache[V](...) {
def doGet[F[_]](key: String)
(implicit mode: Mode[F]): F[Option[V]] =
mode.M.delay {
// do the cache lookup ...
}
}
Synchronous example: Caffeine
class MemcachedCache[V](...) {
def doGet[F[_]](key: String)
(implicit mode: Mode[F]): F[Option[V]] =
mode.M.async { cb =>
val f = client.asyncGet(key)
f.addListener(new GetCompletionListener {
def onComplete(g: GetFuture[_]): Unit = {
if (g.getStatus.isSuccess) {
// ... call the callback with the result
} else {
// ... call the callback with the error
}
}
})
}
}
Callback example: Memcached
Why should I do this?
In a library | - More flexibility for users |
In an application | - Extra dimension of abstraction - More testable |
Extra dimension of abstraction
Decouple:
- Composition of operations (business logic)
- Choice of effects (error handling, context passing)
- Concrete implementation details
Composition of operations
trait Persistence[F[_]] {
def saveNewUser(details: UserDetails): F[UserId]
def findUserById(userId: UserId): F[User]
}
trait Events[F[_]] {
def sendCreatedUserEvent(user: User): F[Unit]
}
class UserOps[F[_]: Monad](
persistence: Persistence[F],
events: Events[F]) {
import persistence._, events._
def createUser(details: UserDetails): F[User] =
for {
userId <- saveNewUser(details)
user <- findUserById(userId)
_ <- sendCreatedUserEvent(user)
} yield user
}
Choice of effects
sealed trait UserServiceFailure
case object NotFound extends UserServiceFailure
case class InternalError(e: Throwable) extends UserServiceFailure
type UserServiceResult[A] = Either[UserServiceFailure, A]
case class Context(traceToken: String)
type UserServiceOp[A] = Kleisli[UserServiceResult, Context, A]
Error handling
Context passing
Concrete impl details
class DbPersistence(db: Database) extends Persistence[UserServiceOp] {
def saveNewUser(userDetails: UserDetails): UserServiceOp[UserId] = {
...
}
def findUserById(userId: UserId): UserServiceOp[User] = {
...
}
}
class KafkaEvents(config: KafkaConfig) extends Events[UserServiceOp] {
def sendCreatedUserEvent(user: User): UserServiceOp[Unit] = {
...
}
}
Bring it all together
type UserService = UserOps[UserServiceOps]
val userService = new UserService(dbPersistence, kafkaEvents)
val userDetails: UserDetails = ...
val program: UserServiceOp[Unit] = userService.createUser(userDetails)
// remember, UserServiceOp[A] = Kleisli[UserServiceResult, Context, A]
program.run(Context(...)) // returns a UserServiceResult[Unit]
Conclusion
Bring Your Own Effect - Scalar 2018
By Chris Birchall
Bring Your Own Effect - Scalar 2018
- 3,240