Computation of algebraic invariants for tensors and product decompositions

Chris Liu, Spring 2025

Preliminary Examination

Tensors are multilinear maps

\( T \) is \( (a \times b \times c) \) grid of numbers

A multilinear interpretation: \[ \langle T \mid - \rangle: \mathbb{R}^a \times \mathbb{R}^b \times \mathbb{R}^c \rightarrowtail \mathbb{R}\] where

\[\left\langle T \; \left|\; \sum_i u_i e_i, \sum_j u_je_j, \sum_k u_ke_k \right.\right\rangle = \sum_{ijk} T_{ijk} u_iv_jw_k\]

Another interpretation: \( [T \mid -]: \mathbb{R}^a \times \mathbb{R}^b \rightarrowtail \mathbb{R}^c \)

Example 1: Multiplication 

Let \( A \) be a K-vector space with bilinear multiplication \( \mu: A \times A \rightarrowtail A \) (a \(K\)-algebra)

For ordered basis \( (e_1,\ldots, e_n )\) of \(A\), coordinatize \(\mu\) by a \( (n \times n \times n) \) grid of numbers \(T\) satisfying \( \mu(e_i,e_j) = \sum_k T_{ijk}e_k \). 

For \(A = K[x]/(x^2+1) \), in the basis \( \{1,x\} \), we have

\[T_{\ast\ast 1} = \begin{bmatrix} 1 & 0 \\ 0 & -1\end{bmatrix}, T_{\ast\ast x} = \begin{bmatrix}0 & 1 \\ 1 & 0 \end{bmatrix}\]

Example 2: Discord chat logs

\(\text{Users}\) = \( \mathbb{R}^{\{\text{Alice}, \text{Bob}, \text{Charlie}, \ldots \}} \)

\(\text{Time}\) = \(\mathbb{R}^{\{\text{Monday}, \text{Tuesday}, \ldots, \text{Sunday}\}} \)

\(\text{Words}\) = \( \mathbb{R}^{\{\text{Math}, \text{Sports}, \text{Movie}, \ldots\}} \)

\( T \) a grid storing number of occurences a user at a time used a word

\( \langle T |: \text{Users} \times \text{Time} \times \text{Words} \rightarrowtail \mathbb{R} \) can be data mined

Example: "weekend hockey group" cluster is a linear combination of Saturday, Sunday for the time axis and Chris & his hockey team in the "users" axis.

Algebra for tensor decompositions

Myasnikov '90, Wilson '08 and others use the algebra, i.e

Adjoints detect

Theorem

Given \( *: U \times V \rightarrowtail W \)

$$\operatorname{Adj}(*) = \{(X,Y) \mid (\forall u,v)Xu*v = u*Yv\}$$

Exists \(\mathcal{E} = \{e_1,\ldots, e_n \} \subset \text{Adj}(*) \),

\( \sum_i e_i = 1\), and \(e_ie_j = e_i \) if \( i = j \), otherwise \(0\)

if and only if

Exists \(\perp\)-decomposition, \(U := \bigoplus_i U_i\) and \(V := \bigoplus_i V_i \), 

\[ U_i * V_j = U_i*V_i \quad \text{if } i = j, \text{otherwise } 0 \]

Derivations detect

Theorem (Brooksbank, Kassabov, Wilson '24)

For \( (u,v,w) \) eigenvectors of \( (X,Y,Z) \) in \( \text{Der}(*) \) with eigenvalues \( (\kappa , \lambda, \rho) \), 

\[w^{\dagger}Z(u*v) = w^{\dagger}(Xu*v + u*Yv)\]

\[ w^{\dagger}(\rho c_w(u*v))-w^{\dagger}(\kappa u*v + u*\lambda v) = 0\]

By distributive property, 

\[ (\rho c_w - \kappa - \lambda) (w^{\dagger}(u *v)) = 0 \]

Conclude either \( \kappa + \lambda - \rho = 0 \) or \( w^{\dagger}(u*v) = 0 \).

Tensor cluster patterns in eigenbasis in above picture

Given \( *: U \times V \rightarrowtail W \)

$$\operatorname{Der}(*) = \{(X,Y,Z) \mid (\forall u,v) \; Z(u*v) = Xu*v + u*Yv \}$$

Product decomposition via algebra

r_1 = \begin{bmatrix} 7 & 10 & 4 & 2\\ 10 & 12 & 2 & 5\\ 1 & 7 & 11 & 12\\ 7 & 11 & 12 & 4 \end{bmatrix} \quad r_2 = \begin{bmatrix} 5 & 6 & 1 & 9 \\ 6 & 1 & 9 & 8 \\ 10 & 12 & 6 & 2\\ 12 & 2 & 2 & 9 \end{bmatrix}

Over \(K = \mathbb{F}_{13}\), let \(r: K^4 \times K^4 \rightarrowtail K^2 \) given by

t_1 = \begin{bmatrix} 10 & 5\\ 5 & 6 \end{bmatrix} \quad t_2 = \begin{bmatrix} 9 & 3\\ 3 & 7 \end{bmatrix}

T gives coordinates of \( K[x]/(x^2+8x+11) \cong \mathbb{F}_{13^2} \)

in \( \{ 3+4x, 7+10x \} \) basis

Centroid algebra detects \( r \) is \( \mathbb{F}_{13^2} \) bilinear

Hence \(r \) may be equal to \( s \otimes t \) for \(s : K^2 \times K^2 \rightarrowtail K \) and t multiplication in \( \mathbb{F}_{13^2} \). Indeed,

s = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}

Pictured is bowtie tensor \(r: K^5 \times K^5 \rightarrowtail K^5 \), having \( 1 \) at entries at \( (1,2,3), (1,4,5) \) and all their permutations. All other entries are \( 0\).

1

2

3

4

5

No product decompositions?

It has no product decomposition. But why?

R_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0\\ 0 & 0 & \mathbf{1} & 0 & 0\\ 0 & \mathbf{1} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & \mathbf{1}\\ 0 & 0 & 0 & \mathbf{1} & 0 \end{bmatrix},\quad R_2 = \begin{bmatrix} 0 & 0 & \mathbf{1} & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ \mathbf{1} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad R_3 = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 & 0\\ \mathbf{1} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},\quad R_4 = \begin{bmatrix} 0 & 0 & 0 & 0 & \mathbf{1}\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ \mathbf{1} & 0 & 0 & 0 & 0 \end{bmatrix}, R_5 = \begin{bmatrix} 0 & 0 & 0 & \mathbf{1} & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ \mathbf{1} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}

Tensor corresponding to hypergraph with hyperedges \( \{1,2,3\} \) and \( \{1,4,5\} \)

Efficient computation

Asymptotic improvement to complexity of solving for \( \text{Der}(*) \)

  Target: \( O(n^6) \) to \( O(n^{4.5}) \) for \( \text{Der}(*) \) of cubic tensors

Tensor decomposition

Generalize existing tensor decompositions to products of tensors

  Target: Computable characterizations of product indecomposability

Proposal Summary

Efficient algorithm for computing the Adjoint Algebra

(Continuation from CSU Qualifying Exam, Part B)

(Joint with James B. Wilson, Joshua Maglione, "Simultaneous Sylvester System")

A \in K^{r \times b \times c}\\ B \in K^{a \times s \times c}\\ C \in K^{a \times b \times c}
X \in K^{a \times r}\\ Y \in K^{s \times b}

Given

Find

Such that

(\forall i) \; XA_i + B_iY = C_i

Interwoven striding in augmented matrix

\begin{bmatrix} A_1 \\ \vdots \\ A_b \end{bmatrix} \otimes I_a
\begin{bmatrix} B_1 \otimes I_b\\ \vdots\\ B_a \otimes I_b \end{bmatrix}
> t := Random(KTensorSpace(GF(997), [20,20,20]));
> Nucleus(t,1,2);
Constructing a 800 by 8000 matrix over Finite field of size 997.
Computing the nullspace of a 800 by 8000 matrix.
Matrix Algebra of degree 40 with 1 generator over GF(997)

More efficient than solving full flattened system

Dense system after clearing

X backsub

Y backsub

\( O(n^3) \) for QuickSylver. \( O(n^6) \) for flattened matrix to compute single solution

Distilling the idea 

Let \(A,B,C,R,S \) vector spaces, with fixed isomorphisms to dual.

Given
  \(r : \textcolor{blue}{R} \times B \times C \rightarrowtail K \),
  \( s : A \times \textcolor{green}{S} \times C \rightarrowtail K \),
  \( t : A \times B \times C \rightarrowtail K \)

Find
  \( x : A \rightarrow \textcolor{blue}{R},  y : B \rightarrow \textcolor{green}{S} \) such that,

\[ r(x(a),b,c) + s(a,y(b),c) = t(a,b,c)\]

for all \( (a,b,c) \) in \( A \times B \times C \)

View \( r: R \rightarrow B \otimes C, s: S \rightarrow A \otimes C \) through isomorphisms to dual

Compute simultaneous sylvester equation restricted to \(A'\) and \( B' \)

Solve dense system

Backsubstitute for rest of solutions

Use left inverses to isolate unknown

Find \( A' \leq A, B' \leq B \) of small dimension that split monomorphisms

\( \tilde{r} : R \hookrightarrow B' \otimes C\) and \(\tilde{s} : S \hookrightarrow A' \otimes C \)

Dissertation Proposal

Efficient algorithm to compute Derivation Algebra

Goal: Asymptotic improvement from \( O(n^6) \) flattened linear system solution for \( \text{Der}(*) \)

A \in K^{r \times b \times c} \quad B \in K^{a \times s \times c} \quad C \in K^{a \times b \times t}

Tiny Example shows more interwoven striding

t_1 = \begin{bmatrix} 10 & 5\\ 5 & 6 \end{bmatrix} \quad t_2 = \begin{bmatrix} 9 & 3\\ 3 & 7 \end{bmatrix}
\begin{array}{|cccc|cccc|cccc|} \hline x_{11}&x_{12}&x_{21}&x_{22} &y_{11}&y_{21}&y_{12}&y_{22} &z_{11}&z_{12}&z_{21}&z_{22} \\\hline 10& 5& & & 10& 5& & & -10& & -9& \\ 9& 3& & & 9& 3& & & & -10& & -9\\ 5& 6& & & & &10& 5 & -5& & -3& \\ 3& 7& & & & & 9& 3 & & -5& & -3\\ & &10& 5 & 5& 6& & 0 & -5& & -3& \\ & & 9& 3 & 3& 7& & 0 & & -5& & -3\\ & & 5& 6 & & & 5& 6 & -6& & -7& \\ & & 3& 7 & & & 3& 7 & & -6& & -7\\ \hline \end{array}

\( \text{Der}(t) \) is nullspace of 

> t := Random(KTensorSpace(GF(997), [20,20,20]));
> DerivationAlgebra(t);
Construting a 1200 by 8000 matrix over Finite field of size 997.
Adding in possible fusion data.
Computing the nullspace of a 1200 by 8000 matrix.

Use idea from Sylvester

Let \(A,B,C,R,S, T \) vector spaces, with fixed isomorphisms to dual.

Given
  \(r : \textcolor{blue}{R} \times B \times C \rightarrowtail K \),
  \( s : A \times \textcolor{green}{S} \times C \rightarrowtail K \),
  \( t : A \times B \times \textcolor{orange}{T} \rightarrowtail K \)

Find
  \( x : A \rightarrow \textcolor{blue}{R}, y : B \rightarrow \textcolor{green}{S}, z : C \rightarrow \textcolor{orange}{T} \) such that

\[ r(x(a),b,c) + s(a,y(b),c) = t(a,b,z(c)) \]

for all \( (a,b,c) \) in \( A \times B \times C \)

Work to be done! Target \( O(n^{4.5}) \) by finding subspaces \(A',B',C'\) - prototype code gives promising results.

Tensor product

Let \( A, B \) be unital associative \( K \)-algebras

Observation: \( A \otimes B \) is a K-algebra, with multiplication
\[ (a \otimes b)(c \otimes d) = ac \otimes bd \]

Example: Kronecker product of matricies

Extend to their multiplication

 For \( s: A \times A \rightarrowtail A\) and \(t: B \times B \rightarrowtail B \), define \( s \otimes t: (A \otimes B) \times (A \otimes B) \rightarrowtail (A \otimes B) \) as

\[ \langle s \otimes t \mid a \otimes b, c \otimes d \rangle = \langle s|a,c\rangle \otimes \langle t|b,d \rangle \]

\begin{array}{|c|cc|} \hline & 1 & x \\ \hline 1 & 1 & x \\ x & x & -1 \\ \hline \end{array} \otimes \begin{array}{|c|cc|} \hline & 1 & y \\ \hline 1 & 1 & y \\ y & y & -5y-10 \\ \hline \end{array} = \begin{array}{|c|cccc|} \hline & 1 & x & y & xy \\ \hline 1 & 1 & x & y & xy \\ x & x & -1 & xy & -y \\ y & y & xy & -5y-10 & -5xy-10x \\ xy & xy & -y & -5xy-10x & 5y+10 \\ \hline \end{array}

For \( s: U \times V \rightarrowtail W \) and \(t: X \times Y \rightarrowtail Z \)

Construction is standard using natural isomorphism
\( (U \otimes V) \otimes (X \otimes Y) \cong (U \otimes X) \otimes (V \otimes Y) \) see Multilinear Algebra by Greub, Section 1.21

Define \( s \otimes t: (U \otimes X) \times (V \otimes Y) \rightarrowtail (W \otimes Z) \) as
\[ \langle s \otimes t | u\otimes x, v \otimes y \rangle = \langle s | u,v \rangle \otimes \langle t | x,y \rangle \]

Tensor product of bilinear maps

Extend to bilinear maps

Let \( S \) and \(T \) be spaces of bilinear maps

Spaces of bilinear maps too

Define \( S \otimes T \) as space of bilinear maps spanned by \( \{s \otimes t | s \in S, t \in T \} \)

Let \(s: K^2 \times K \rightarrowtail K^2 \) and \( t: K \times K^3 \rightarrowtail K^3 \) both be bilinear maps corresponding to scaling vectors by \( K \)

Their product \( s \otimes t \) is a bilinear map from

\( (K^2 \otimes K) \times (K \otimes K^3)\) to \((K^2 \otimes K^3) \). Looks a lot like the outer product signature

Hence \( s \otimes t \cong r \), for \(r: K^2 \times K^3 \rightarrowtail K^6 \) the outer product tensor.

Example

Indeed,

\left\langle s \otimes t \left| \begin{bmatrix}u_1 \\ u_2\end{bmatrix} \otimes k_1, k_2 \otimes \begin{bmatrix}v_1 \\ v_2 \\ v_3 \end{bmatrix} \right. \right\rangle = \left\langle s \left| \begin{bmatrix} u_1\\u_2 \end{bmatrix}\right. ,k_2 \right\rangle \otimes \left\langle t \left| k_1, \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \right. \right\rangle
= k_1k_2 \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \otimes \begin{bmatrix}v_1 & v_2 & v_3 \end{bmatrix} = k_1k_2 \begin{bmatrix} u_1v_1 & u_1v_2 & u_1v_3 \\ u_2v_1 & u_2v_2 & u_2v_3 \end{bmatrix}

Arbitrary valence​

Let \( s: U_n \times \cdots \times U_1 \rightarrowtail U_0 \) and \( t: V_n \times \cdots \times V_1 \rightarrowtail V_0 \)

Define \( s \otimes t: (U_n \otimes V_n) \times \cdots \times (U_1 \otimes V_1) \rightarrowtail (U_0 \otimes V_0) \) as

\[ \langle s \otimes t|(u_i\otimes v_i)_{i=1}^{n} \rangle = \langle s| u_n,\ldots, u_1\rangle \otimes \langle t |v_n, \ldots, v_1\rangle \]

Differing valence tensors

Given \(s: K^2 \times K \rightarrowtail K^2 \), and \( t: K^3 \rightarrow K^3 \)

Define \( \tilde{t}: \textcolor{blue}{K} \times K^3 \rightarrowtail K^3 \) by
\[ \langle \tilde{t} | \textcolor{blue}{k}, u\rangle = \textcolor{blue}{k} \langle t | u\rangle \]

\( \tilde{t} \cong t\)  by isomorphism \(K \otimes K^3 \cong K^3 \), so \( s \otimes t \) still sensible after "padding out" by \( K \).

Dissertation Proposal

Computable characterizations for product decompositions

Goals

  1. Find efficiently computable criterion for a tensor to be Kronecker indecomposable
  2. Study restricted and parametrized product decompositions

Definition

Given \( r: U_n \times \cdots \times U_1 \rightarrowtail U_0 \), we say \(r\) has a Kronecker decomposition into a finite set \(\mathcal{S}\) if

\[ r \cong \bigotimes_{s \in \mathcal{S}}s \quad \text{for } s: V_{s,n} \times \cdots \times V_{s,1} \rightarrowtail V_{s,0} \]

r is Kronecker indecomposable if \( r \cong \bigotimes_{s \in \mathcal{S}}s \) implies \( \mathcal{S} \subset \{r, \mathbf{1} \}\), where \(\mathbf{1}: K \times \cdots \times K \rightarrowtail K \) is \(K\)-multiplication tensor.

Add to existing corpus of decompositions

Kronecker-decomposition

a = bc means \( \mathbb{M}_a(K) \cong \mathbb{M}_b(K) \otimes \mathbb{M}_c(K) \)

Hence

Example 1: Kronecker product of matricies

\( \langle r | E_{ij}, E_{kl} \rangle \)

\( \langle s | F_{\hat{\imath}, \hat{\jmath}}, F_{\hat{k},\hat{l}} \rangle \) \(\otimes \) \( \langle t | G_{\hat{\imath}, \hat{\jmath}}, G_{\hat{k}, \hat{l}} \rangle\)

\(\cong\)

\( \delta_{\hat{\jmath}\hat{k}}F_{\hat{\imath}\hat{l}} \) \(\otimes \) \( \delta_{\hat{\jmath}\hat{k}}G_{\hat{\imath}\hat{l}} \)

\(\delta_{jk}E_{il} \)

\(\cong\)

\(:\mathbb{M}_{b}(K) \times \mathbb{M}_{b}(K) \rightarrowtail \mathbb{M}_{b}(K) \)

\(s\)

\( :\mathbb{M}_{c}(K) \times \mathbb{M}_{c}(K) \rightarrowtail \mathbb{M}_{c}(K) \)

\(t\)

\(:\mathbb{M}_{a}(K) \times \mathbb{M}_{a}(K) \rightarrowtail \mathbb{M}_{a}(K) \)

\(r\)

\(\cong\)

\(\otimes\)

Example 2: Associative algebras

\( \mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{M}_2(\mathbb{C}) \)

\[ 1 \otimes 1 \mapsto \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}, i \otimes 1 \mapsto \begin{bmatrix}i & 0\\ 0 & -i\end{bmatrix}, j \otimes 1 \mapsto \begin{bmatrix}0 & 1\\-1 & 0\end{bmatrix}, k \otimes 1 \mapsto \begin{bmatrix}0 & i \\ i & 0\end{bmatrix}\]

\( u = i_{\mathbb{H}} \otimes i_{\mathbb{C}} \)  satisfies \( u^2 = 1 \)

so the idempotent \(\frac{1+u}{2} \) splits the algebra

Now Kronecker-decomposing \( r: \mathbb{M}_{2}(\mathbb{C}) \times \mathbb{M}_{2}(\mathbb{C}) \rightarrowtail \mathbb{M}_{2}(\mathbb{C}) \) does not have a canonical choice. But Brauer Group classifies.

\( \mathbb{M}_2(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{M}_2(\mathbb{C}) \)

\( [m_{ij}] \otimes c \mapsto [cm_{ij}] \)

Example 3: Away from associative algebras

Let \( K^3 \) spanned by \( \{ e,f,h \} \), and \( s: K^3 \times K^3 \rightarrowtail K^3 \) be the tensor given by
\[ \langle s | e,f \rangle = h \\ \langle s | e,h \rangle = -2e \\ \langle s | f,h \rangle = 2f \]

and \( \langle s | u,v \rangle = - \langle s | v,u \rangle \)

\( s \) is the multiplication tensor for Lie algebra \( \mathfrak{sl}_2 \) and will also feature shortly

Let \( r = s \otimes s \) be given as a bilinear map \( K^9 \times K^9 \rightarrowtail K^9 \) - how would we detect \(r\) as Kronecker decomposable?

Associative tools like \( \text{Adj}(t) \) do not help.

Preliminary\({}^{1}\) Results

Definition [Derivation Closure] (First, Maglione, Wilson '20)

\( (| t |)  = \{ s: U_n \times \cdots \times U_1 \rightarrowtail U_0 \mid \operatorname{Der}(t) \subseteq \operatorname{Der}(s) \} \)

\({}^1\) Pun maybe intended

Theorem
\( (| s \otimes t |) = (| s |) \otimes (| t |) \) as spaces of multilinear maps

Corollary

If \( \operatorname{dim} (| s |) = 1 \), then  \( (| s \otimes t |) = (| s |) \otimes (| t |) \cong (| t |) \)

Using Corollary to decide isomorphism

Let \(s: K^3 \times K^3 \rightarrowtail K^3 \) be the \( \mathfrak{sl}_2 \) multiplication tensor.

 

Fact: \( \text{dim}(| s |) = 1 \)

By Theorem 1.4 of Tensor Isomorphism by Conjugacy of Lie Algebras, can decide isomorphism \( s^{\otimes d} \cong r \) in polynomial time.

Let \( r: K^{3d} \times K^{3d} \rightarrowtail K^{3d} \) be any tensor.

 

By Theorem, \( \text{dim} (| s^{\otimes d}|) = 1 \)

Bowtie tensor is indecomposable?

A decomposition \( r = s \otimes t\) must satisfy

\[ 4 = \text{dim}(|r|) = \text{dim}(|s|)\text{dim}(|t|) \]

Recall the bowtie tensor \( r: K^5 \times K^5 \rightarrowtail K^5 \) has entry \(1 \) at \((1,2,3)\), \((1,4,5)\), and all its permutations

Fact: \( \text{dim}(| r |) = 4 \)

Observation

Any bilinear map \(M: K^a \times K^b \rightarrowtail K \) has \(\text{dim} (|M|) = 1 \)

Proof sketch at bottom of this column of slides

If \(r = s \otimes t\), because \(5\) is prime, both \(s\) and \(t\) must be

\( K^a \times K^b \rightarrowtail K \) after shuffling axes so \( \text{dim}(|s |) = \text{dim}(| t |) = 1 \).

Not possible so \(r \) is Kronecker indecomposable

Definition [\( (P,\Omega) \)-product] (First, Maglione, Wilson, '20):  
Let \( U_n, \ldots, U_1 \) be vector spaces, \( P \subset K[x_n,\ldots, x_1] \), \( \Omega \subset \prod_i \operatorname{End}(U_i) \)

Define the subspace of \( U_n \otimes \cdots \otimes U_1 \),
\[\Xi(P, \Omega) = \left\langle \sum_e \lambda_e \omega_1^{e_1}u_1 \otimes \cdots \otimes \omega_n^{e_n} u_n \;\left|\; \sum_e X^e \in P, \omega \in \Omega \right. \right\rangle\]

The \( (P,\Omega) \)-tensor product of spaces \( U_n, \ldots, U_1 \) is the vector space \( (| U_n, \ldots, U_1 |)^{P}_{\Omega} =  U_n \otimes \cdots \otimes U_1 / \Xi(P,\Omega) \)

Other products

Example: Given \( t: U_2 \times U_1 \rightarrowtail U_0 \)

\(\Xi(x_2-x_1,\text{Adj}(t)) \) = \( \langle X u_2 \otimes u_1 - u_2 \otimes Y u_1 \mid (X,Y) \in \text{Adj}(t) \rangle \), 

\[ (|U_2,U_1|)^{x_2-x_1}_{\text{Adj}(t)} = U_2 \otimes_{\text{Adj}(t)} U_1\]

\((P,\Omega)\)-products are the starting point for non-Kronecker decompositions of tensors.

\( \text{Der}(\text{bowtie}) = \mathfrak{sl}_2 \oplus \mathfrak{sl}_2\).

Does there exists a \((P,\Omega)\) for which bowtie is \((P,\Omega)\)-decomposable?

1

2

3

4

5

Observation

Any bilinear map \(M: K^a \times K^b \rightarrowtail K \) has \(\text{dim} (|M|) = 1 \)

Proof sketch

All of the following triples \((X,Y,z)\) are in \( \text{Der}(M) \)

\[X = \begin{bmatrix} \text{diag}(\lambda)_r & * \\ 0 & *\end{bmatrix} \quad Y = \begin{bmatrix}\text{diag}(\mu)_r & 0 \\ * & *\end{bmatrix} \quad z = \lambda + \mu\]

Write M in reduced row/column echelon basis \( M = \begin{bmatrix} I_r & 0_{r\times b-r} \\ 0_{a-r \times r} & 0_{a-r \times b-r} \end{bmatrix} \).

If \( N \neq kM \), there is some \( (X,Y,z) \) in \(\text{Der}(M)\) not satisfying \( XN + NY = zN\).

Hence \((X,Y,Z) \) is not in \( \text{Der}(N)\)

Questions?

TODOS:

  1. Outer action definition make it easier to read/understand
  2. "Kronecker indecomposable"
  3. Describe goals in start slides and ensure it's standalone
  4. More than just sl2 example for lie product decomp
  5. "smaller" meaning when describing kronecker decompositions
  6. More pictures, consistent notation (avoid multilinear and hom and...)
  7. Point to slides, no hoodie, don't put hands in pocket
  8. \Xi(P,\Omega): Better intuition on the subspace - talk about it
  9. Mention "Brauer" for associative algebras
  10. Maybe add the bowtie tensor example?
  11. Describe fact that an infinite family has 1D densor for a fixed Lie algebra
  12. Pic/example of 2x2x2 system?
  13. Full tensorOverCentroid example in writeup

TODOS May 1

  1. Theorem authorship credit folklore a bit more rather than an exact one
  2. Move problem first in derivation question
  3. "Given, Return" question set up for der closure
  4. Colors for equations
  5. Sylvester equation composition notation fix up using iotas
  6. Tiny der example: stride it out with some non-standard numbers
  7. Avoid "believe" or "hope" words
  8. Tensor product of algebras -> go down to regular old tensor products of things with a product structure like a ring
  9. Outer product tensor make into pictures to be less wordy
  10. Drawing use tikz or some non-hand drawn tools
  11. Derivation equation flattened: typeset it a bit better
  12. Indecomposable: more precise language, new notation
  13. "other products" - tighter language, mention "parametrized", combinatorics
  14. (P,\Omega) products - mention interpretation challenges
  15. Start and end with bowtie example
  16. Splitting verbal emphasis on Quaternions tensor C having zero divisors example

Clearing and backsubstitution algorithm translates to finding \( A' \leq A, B' \leq B \) such that \[ (\pi_{A'} \otimes I_C) \circ r \] and \[ (\pi_{B'} \otimes I_C) \circ s \] have left inverses

Given 3 bilinear maps \[ r: U_2 \times U_1 \rightarrowtail U_0 \\ s: V_2 \times V_1 \rightarrowtail V_0 \\ t: W_2 \times W_1 \rightarrowtail W_0 \]

Place \( r,s,t \) in spaces of bilinear maps \( U,V,W \), respectively.

Fix some \( P \subset K[x,y,z]\), \(\Omega \subset \text{End}(U) \times \text{End}(V) \times \text{End}(W) \)

In addition to \( r \otimes s \otimes t \), the \( (P,\Omega) \)-product \( (| U,V,W |)^{P}_{\Omega} \) is another mechanism to combine tensors \(r,s,t\) as \( (|r,s,t|) \). 

SKIP!

Coordinatized

Definition: (Outer action)
Let \( t \in K^{a \times b \times d} \) given as \( [t_1,\ldots, t_d] \), each an \( a \times b \) matrix, let \( Z \in \mathbb{M}_{d\times c}(K) \)

The outer action of Z on t is \( t^Z \in K^{a \times b \times c} \) given as \( [(t^Z)_1, \ldots, (t^Z)_c] \), where \( (t^Z)_j = \sum_i t_i Z_ij \)

A \in K^{r \times b \times c}\\ B \in K^{a \times s \times c}\\ C \in K^{a \times b \times t}
X \in K^{a \times r}\\ Y \in K^{s \times b}\\ Z \in K^{t \times c}

Given

Find

Such that

(\forall i) \; XA_i + B_iY + (C^Z)_i = 0

SKIP!

Theorem (Brooksbank, Maglione, Wilson '21)

1. There are an infinite family of tensors t with \( \text{dim} (| t |) = 1 \)

2. Given \( s, t: U \times V \rightarrowtail W \) with \( \text{dim} (| s |) = 1 \) and \( \text{dim} (| t |) = 1 \), over big enough fields,

Deciding \( s \cong t \) is polynomial in \( \text{dim}(U + V +W) \)

\( (| * |)  = \{ s: U \times V \rightarrowtail W \mid \operatorname{Der}(*) \subseteq \operatorname{Der}(s) \} \)

Skip!

Extend to higher valence tensors

\( \langle t |: U_3 \times U_2 \times U_1 \rightarrowtail U_0 \)

\( \operatorname{Nuc}_{32}(t) = \{ (X,Y) \mid \langle t|Xu_3, u_2, u_1 \rangle = \langle t | u_3, Yu_2, u_1 \rangle \)

\( \operatorname{Der}_{321}(t) = \{ (X,Y,Z) \mid \langle t|Xu_3, u_2, u_1 \rangle + \langle t | u_3, u_2, Yu_1 \rangle = \langle t | u_3, u_2, Zu_1 \rangle \)

SKIP!

\( (| \cdots |): U_n \times \cdots U_1 \rightarrowtail (| U_n,\ldots,U_1 |)^{P}_{\Omega} \)

where

\( (| u_1,\ldots, u_n |) := u_1 \otimes \cdots \otimes u_n + \Xi(P,\Omega) \)

Prelim - A research proposal on tensors

By Chris Liu

Prelim - A research proposal on tensors

  • 44