Math Basics

Introduction

1

Adrian, Jonathan, Alexander

Part I

Introduction

2

Example: Grades

Grading system:

Values:

Gauss Distribution

3

Gauss Distribution

\mathcal{N}(x\; |\; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{{(x-\mu)}^2}{2\sigma^2}}

Gauss Distribution

4

Probability Density Function

\mu = 2.55
\sigma^2 = 1.06

Gauss Distribution

5

Probability Density Function

\mu = 3.0
\sigma^2 = 0.8

Gauss Distribution

6

Model Sampling

1.0 - 5.0?

Gauss Distribution

7

Model Sampling

\cdot x +
x \in (-1,1)
\cdot 0.37 +\;\;\;\;\;\;\; = 2.94
2.55
1.06
\mu
\sigma

Gauss Distribution

8

Model Sampling

Gauss Distribution

9

Model Rules

very\; good\; grade \rightarrow ok'ish\;grade
very\; bad\; grade \rightarrow good\; grade
ok'ish\; grade\rightarrow ok'ish\;grade
+
+
\approx 2.5

Gauss Distribution

10

Without the last value

very\; good\; grade \rightarrow ok'ish\;grade
very\; bad\; grade \rightarrow good\; grade
ok'ish\; grade\rightarrow ok'ish\;grade
+
+

Gauss Distribution

11

Another "sensor"

very\; good\; grade \rightarrow ok'ish\;grade
very\; bad\; grade \rightarrow good\; grade
ok'ish\; grade\rightarrow ok'ish\;grade
+
+
\approx 3.5

Gauss Distribution

12

All "sensors"

very\; good\; grade \rightarrow ok'ish\;grade
very\; bad\; grade \rightarrow good\; grade
ok'ish\; grade\rightarrow ok'ish\;grade
+
+
\approx 3.22

Gauss Distribution

13

Formality

very\; good\; grade \rightarrow ok'ish\;grade
very\; bad\; grade \rightarrow good\; grade
ok'ish\; grade\rightarrow ok'ish\;grade
+
\approx 3.22
+
x_{known\;data} \sim N(\mu_k, \sigma_k)
x_{t} = rule(x_{t-1})
x_{face} \sim N(\mu_f, \sigma_f)
x_{known\;data} \cdot trust_k
x_{face} \cdot trust_f
rule(
)
+
x_{t-1} \cdot trust_t
+

Basic Physics Formulae

x,y = \text{position}
y_{t+1} = (\frac{1}{2} a_x t^2 + v_x t) \cdot sin(\phi) + (\frac{1}{2}a_y t^2 + v_y t) \cdot cos(\phi) + y_t
x_{t+1} = (\frac{1}{2} a_x t^2 + v_x t) \cdot cos(\phi) + (\frac{1}{2}a_y t^2 + v_y t) \cdot sin(\phi) + x_t
a_x,a_y = \text{acceleration}
v_x,v_y = \text{forward / lateral velocity}
\phi = \text{yaw angle}

Math Basics Part I

By cirquit

Math Basics Part I

  • 75