Introduction to MonoSLAM

Introduction

1

Alexander Isenko

Part I

Goals

Building a map

2

(0,0)
(3.6, 2)
(?, ?)

Goals

Localization

3

(0,0)
(3.6, 2)
(5, 2.5)
(4, 5)
(3, 2.5)

SLAM Pipeline

Pipeline

4

Visual Sensors

Data

Association

Odometry

EKF 

Odo. Update

EKF 

Re-Observation

EKF New Observation

Landmark

Extraction

30 Hz

100 Hz

  • image data
  • edges
  • features

known?

unknown?

  • angle diff.

Landmarks

Landmarks

5

  • should be unique
  • re-observable
    • from multiple angles
  • stationary
  • plentiful

Landmarks

Landmarks

6

Localization - MonoSLAM

Localization

7

Requirements:

  • constant time calculation
  • time-independent state calculation
  • start with a known reference point
  • work in a restricted volume 
  • any 3D translation should be possible
    • loop closing in 10s or 10min, doesn't matter
  • only map necessary features, we want localization
  • stable, long - term landmarks

Structure from Motion

Localization

8

State

State Description

8

\hat{x}_p = \{ angle, position \}
\hat{y_i} = \{ angle, position \}
\hat{x}_p
\hat{y_1}
\hat{y_2}
\hat{x} = \{ x_p, y_1, y_2, ... , y_n \}
P_n = cov(\hat{x}, \hat{x})

State

State Description

9

\hat{x}_p
\hat{y_1}
\hat{y_2}
\hat{x} = \{ x_p, y_1, y_2, ... , y_n \}
P_n = cov(\hat{x}, \hat{x})
0.5
1.5

State

State Description

10

\hat{x}_p
\hat{y_1}
\hat{y_2}
\hat{x} = \{ x_p, y_1, y_2, ... , y_n \}
P_n = cov(\hat{x}, \hat{x})
P_n = \begin{bmatrix} \hat{x}\hat{x} & \hat{x}y_1 & ... & \hat{x}y_n \\ y_1\hat{x} & y_1 y_2 & ... & y_1 y_n \\ ... \\ y_n\hat{x} & y_n y_2 & ... & y_n y_n \\ \end{bmatrix}
0.8
2.0

Next Lession

State Description

11

Extended Kalman Filter

Covariance Visualized

Measurement Model

Prediction Model

How to encorparate noise

Introduction to MonoSLAM (Part I)

By cirquit

Introduction to MonoSLAM (Part I)

  • 83