Digital Curvature Flow

Daniel Martins Antunes

Université Savoie Mont Blanc, LAMA

Seminar LIMD

March 21, 2019

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Presentation plan

Introduction

Motivation problems

Regularization in imaging

Curvature as regularization

Discretization and multigrid convergence

Contribution

Optimization model

Non-submodular energies

Interpretation

Discussion and application

Conclusion

Digital Curvature Flow

Introduction

Contribution

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Image segmentation

[Antunes, 2019]

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Conclusion

Digital Curvature Flow

[Unger, 2011]

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Denoising

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

[Furukawa, 2015]

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

3D Reconstruction

Introduction

Contribution

Conclusion

Digital Curvature Flow

Segmentation

Denoising

3D Reconstruction

Inverse Problems

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

\displaystyle u^\star = \text{arg} \min_{u \in \Omega} E(u)

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Solving Strategy

Model for denoising

\displaystyle E(u) = \alpha || g - u ||^2 + \beta || \nabla u ||^2,

Let      be the image space

where     is the noisy (input) image.

\Omega
g

Solution resemble input image

Solution should be smooth

Introduction

Contribution

Conclusion

Digital Curvature Flow

Denoising: Bayesian interpretation

The noise is modeled as a gaussian (μ=0; σ=1)

Input image

Perfect image

Noise

Pr(u|g) = \frac{ Pr(g|u)Pr(u) }{ Pr(g) }
Pr(g|u) = \frac{e^{(- ||g-u||^2/2 )}}{\sqrt(2\pi) }
Pr(u) = e^{-R(u)}
\displaystyle u^\star = \text{arg} \min_{u} \quad \frac{|| g - u ||^2}{2} + R(u)

Regularization term

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

g = u + \eta

Introduction

Contribution

Conclusion

Digital Curvature Flow

Regularization terms

Tikhonov

R(u)= \int_{\Omega}{ |\nabla u(x)|^2 dx }
R(u)= \int_{\Omega}{ |\nabla u(x)|dx }

Total Variation

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

\displaystyle E(u,K) = \int_{\Omega - K}{ (g-u)^2 dx} + \lambda\int_{\Omega - K}{||\nabla u||^2 dx} + \int_{K}{dx}

Mumford-Shah model

Similar to original image

Piecewise smooth

Small perimeter

Chan-Vese

Ambrosio-Tortorelli (DC formulation by Foare)

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Image segmentation

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Data term

Data + Perimeter term

Data + Curvature term

[El-Zehiry, 2010]

Curvature as regularization in segmentation

Completion property

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

\displaystyle E(u) = \int_{\Omega}{ ( u - g )^2 dx } + \int_{\partial u}{ \alpha + \beta \kappa^2 ds}

Non-convex term

Difficult to optimize

Second order term. Should be careful with discretization scheme

Integration domain is unknown

\Big\{

Elastica energy

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Curvature as regularization in segmentation

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

\hat{\kappa}(x_i)=\frac{\alpha_i}{\min\{l_i,l_{i+1}\}}

Curvature discretization

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

x_i

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

[Roussillon, 2011]

Digitization ambiguity

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Multigrid Convergence

\forall \hat{x} \in \partial_hX \text{ with } || \hat{x} - x ||_{\infty} \leq h\\ || \hat{E}(D_h(X),\hat{x},h) - E(X,x)|| \leq \tau_{X}(h)
\exists h_X > 0 \text{ such that, for any } 0 < h < h_X \text{ and } x \in \partial X

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

X

an euclidean shape

h-frontier of

grid step

digitization of X with grid step h

h
D_h(X)
\partial_h X
D_h(X)
E(X,x)

geometric quantity at point x of X

\hat{E}(D,\hat{x},h)

estimated geometric quantity

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Integral based estimator for curvature

\hat{\kappa}_{R,h}(x_i) = \frac{3}{R^3} \Big( \frac{\pi R^2}{2} - \widehat{Area} ( B_{R,h}(x_i) \cap D_h ) \Big)

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

[Coeurjolly, 2013]

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Advantages of integral based estimator for curvature

Parameter free

Robustness to noise

Extendable to 3D

Simple formulation

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

To sum up

We want to use curvature as regularization term in models of image processing tasks

We believe that by using a multigrid convergent estimator, we can  avoid some of the difficulties of adding curvature on the optimization process

1. Motivation problems

2. Regularization

3. Curvature regularization

4. Discretization and multigrid convergence

Introduction

Contribution

Conclusion

Digital Curvature Flow

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Model simplification

\displaystyle \min_{y} \sum_{y_j \in \mathcal{L}}{\hat{k}_R^2(y_j) \cdot y_j \cdot \hat{s}(y_j)}
\text{ subject to } T, y \in \{0,1\}
\displaystyle E(u) = \int_{\Omega}{ ( u - g )^2 dx } + \int_{\partial u}{ \alpha + \beta \kappa^2 ds}
\displaystyle \kappa^2 ds
\displaystyle \int_{\partial u}

Consistency constraints

\displaystyle \min_{y} \sum_{y_i \in \mathcal{C}}{\hat{k}_R^2(y_i)}

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Curve evolution model

Given a connected digital shape     , optimize its 4-connected pixel boundary accordingly with the energy

\displaystyle \min_{y} \sum_{y_i \in \mathcal{C}(D)}{\hat{k}_R^2(y_i)}
D
\displaystyle \min_{y} \sum_{y_i \in \mathcal{C}(D)}{\hat{k}_R^2(y_i)}

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

\displaystyle \min_{y} \sum_{p \in \mathcal{C}(D)}{ \left( (1/2+ |F_r(p)|-c_2) \cdot \sum_{y_i \in Y_r(p)}{y_i} + \sum_{ y_i,y_j \in Y_r(p); i < j }{y_iy_j} \right) }
\displaystyle \min_{y} \sum_{y_i \in \mathcal{C}(D)}{\hat{k}_R^2(y_i)}

Non-submodular energy

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Curve evolution model

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

\displaystyle U

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Submodular set function

Let     be a finite set and                     a set function. Function    is submodular iff

\displaystyle f:2^{U} \rightarrow \mathbb{R}
\displaystyle f(A \cup \{b\}) - f(A) \geq f(A \cup \{b,c\} ) - f(A \cup \{c\})
\displaystyle \text{for all } A \subset \Omega, b \neq c \in \Omega \setminus A

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Quadratic pseudo-boolean function

\displaystyle \forall i,j \quad E_{i,j}(0,1) - E_{i,j}(0,0) \geq E_{i,j}(1,1) - E_{i,j}(1,0)
\displaystyle E:\{0,1\}^n \rightarrow \mathbb{R}, \quad \sum_{y_i \in Y}{ E_i(y_i) } + \sum_{ y_i,y_j \in Y; i < j }{E_{i,j}(y_i,y_j)}

Definition: Function E is regular if

Submodular set functions is a subclass of QPSB functions, namely those that are regular.

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Quadratic pseudo-boolean function

Submodular (regular) functions can be optimized in polynomial time

The optimization of a general non-submodular function is NP-Hard

A technique called Roof Duality may find a partial solution. Such solution is guaranteed to be a subset of some optimal solution

\displaystyle \sum_{p \in \mathcal{O}}{ \left( (1/2+ |F_r(p)|-c_2) \cdot \sum_{y_i \in Y_r(p)}{y_i} + \sum_{ y_i,y_j \in Y_r(p); i < j }{y_iy_j} \right) } \\ \text{ is non-submodular }\\ \\ E_{i,j}(0,1) - E_{i,j}(0,0) \geq E_{i,j}(1,1) - E_{i,j}(1,0)\\ \text{for some } i,j \quad 0 - 0 \not\geq 1 - 0

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Quadratic pseudo-boolean function

QPBOP: Returns partial solution. Some pixels are not labeled.

QPBOI: Improves a partial solution value and returns a full labeling. Partial optimality property is loss.

If energy is submodular, QPBOP labels all variables.

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Optimization region

It is not symmetric

\mathcal{O}
\hat{\kappa}_{R,h}(x_i) = \frac{3}{R^3} \Big( \frac{\pi R^2}{2} - \widehat{Area} ( B_{R,h}(x_i) \cap D_h ) \Big)

Trusty foreground

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Curve evolution model

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Curve evolution model

Convex regions are removed. Flat and concave regions stays the same

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Sensible regions indication

\displaystyle \min_{y} \sum_{y_i \in \mathcal{O}}{\hat{k}_R^2(y_i)}

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

\displaystyle \min_{y} \alpha \sum_{y_i \in \mathcal{O}}{\hat{k}_R^2(y_i)} + \beta \sum_{y_i \in \mathcal{O}}\sum_{y_j \in \mathcal{N}_4(y_i)}{ (y_i-y_j)^2}
\displaystyle \min_{y} \sum_{y_i \in \mathcal{O}}{\hat{k}_R^2(y_i)}
\alpha=1\\ \beta=0.5
\alpha=1\\ \beta=1.0
\alpha=1\\ \beta=2.0

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Perimeter regularization

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Optimization region

\mathcal{O}

Trusty foreground

Computation Region

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Filtering artifacts

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Level expand-correct evolution

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Level expand-correct evolution

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Unlabeled pixels

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Segmentation post-processing

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Segmentation post-processing

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Model summary

Curvature regularization using multigrid convergent

estimator

Post-processing step in image segmentation

Works well with extra terms ( data fidelity, perimeter )

Too local. Completion property is not recovered

Digital Curvature Flow

Introduction

Contribution

Conclusion

1. Model

2. Non-submodular functions

3. Interpretation

4. Applications and discussion

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

Take-home message

Regularization is a classical approach to solve inverse problems, including those of image processing;

Non-convex terms can be useful, but optimization is non trivial;

Completion property of curvature is achieved in a global optimization framework.

Multigrid convergent estimators should be preferred when working with digital data;

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Thank you for your attention!

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

What to do next

Global optimization model

\text{ subject to } T, x \in \{0,1\}

Linearization + Relaxation + LP solver

Partial linearization + Relaxation + Penalization + QSolver

Linearization + Partial Relaxation + Branch and Bound

\displaystyle \min_{y} { \sum_{y_i \in \mathcal{L} } y_i \cdot \left( C_1 + C_2 \cdot \sum_{y_j \in \mathcal{C} }{y_j} + \sum_{y_j,y_k \in \mathcal{C} }{y_jy_k} \right) }
\displaystyle \min_{y} \alpha\sum_{y_i \in \mathcal{C} }{ D(y_i) } + \beta\sum_{y_j \in \mathcal{L}}{\hat{k}_R^2(y_j) \cdot y_j \cdot \hat{s}(y_j)}

Optimize submodular approximation of the energy

?

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

What to do next

Relation with Thresholding Dynamics

Daniel Martins Antunes

Seminar LIMD,  March 21, 2019

Digital Curvature Flow

Introduction

Contribution

Conclusion

What to do next

Discrete calculus formulation

Digital Curvature Flow

By Daniel Martins Antunes

Digital Curvature Flow

A preliminary version of the slides of DGCI. It was presented at LAMA during the seminar of the LIMD research group.

  • 147