PHYS 207.013

Chapter 15

oscillation

Instructor: Dr. Bianco

TAs: Joey Betz; Lily Padlow

 

University of Delaware - Spring 2021

Simple Harmonic Oscillator

\frac{d^2x}{dt^2} \propto x
T = \frac{2\pi}{\omega}

H&R CH15 oscillations

x = A \cos{(\omega t + \phi)}

Simple Harmonic Oscillator

\frac{d^2x}{dt^2} \propto x
\frac{dx}{dt} = -A\omega \sin{(\omega t + \phi)}
T = \frac{2\pi}{\omega}

H&R CH15 oscillations

x = A \cos{(\omega t + \phi)}
\frac{d^2x}{dt^2} = -A\omega^2 \cos{(\omega t + \phi)}

pendulum

but T changes with θ !

ma_y = m\frac{d^2y}{dt^2} = T\cos{\theta}-mg
ma_x = m\frac{d^2x}{dt^2} = -T\sin{\theta} = -T\frac{x}{l}

H&R CH15 oscillations

H&R CH15 oscillations

pendulum

but T changes with θ !

small angle approximation:

\theta << 1 rad =>
\cos{\theta} \sim 1\\ a_y = 0
ma_y = m\frac{d^2y}{dt^2} = T\cos{\theta}-mg
ma_x = m\frac{d^2x}{dt^2} = -T\sin{\theta} = -T\frac{x}{l}

H&R CH15 oscillations

pendulum

ma_y = m\frac{d^2y}{dt^2} = T\cos{\theta}-mg
ma_y = m\frac{d^2y}{dt^2} = T-mg = 0
ma_x = m\frac{d^2x}{dt^2} = -T\sin{\theta} = -T\frac{x}{l}
ma_y = m\frac{d^2y}{dt^2} = T-mg = 0
T = mg => ma_x = -mg\frac{x}{l}
\frac{d^2x}{dt^2} = -\frac{g}{l}x

H&R CH15 oscillations

spring

H&R CH15 oscillations

\frac{d^2x}{dt^2} = -\frac{k}{m}x
\frac{d^2x}{dt^2} = -\frac{k}{m}x

UNIFORM CIRCULAR MOTION

\vec{v} = -v \sin{\theta} \hat{i} + v \cos{\theta} \hat{j}

H&R CH4 motion in 2D and 3D

r

Uniform cirular motion

SPEED DOES NOT CHANGE - VELOCITY CHANGES!

\alpha

UNIFORM CIRCULAR MOTION

\vec{v} = -v \sin{\theta} \hat{i} + v \cos{\theta} \hat{j}

H&R CH4 motion in 2D and 3D

r

Uniform cirular motion

SPEED DOES NOT CHANGE - VELOCITY CHANGES!

\alpha
x(t) = r \cos{\omega t}
y(t) = r \sin{\omega t}

simple harmonic motion

spring

H&R CH15 oscillations

\frac{d^2x}{dt^2} = -\frac{k}{m}x

pendulum

\frac{d^2x}{dt^2} = -\frac{g}{l}x

spring

H&R CH15 oscillations

\omega^2 = \frac{k}{m }

pendulum

\omega^2 = \frac{g}{l}

spring

H&R CH15 oscillations

T = \frac{2 \pi}{\omega} = 2\pi\sqrt{\frac{m}{k}}

pendulum

T = \frac{2 \pi}{\omega} = 2\pi\sqrt{\frac{l}{g}}

H&R CH15 oscillations

pendulum

T = \frac{2 \pi}{\omega} = 2\pi\sqrt{\frac{l}{g}}

H&R CH15 oscillations

pendulum

T = \frac{2 \pi}{\omega} = 2\pi\sqrt{\frac{l}{g}}
\tau = -l(mg \sin{\theta}) = I\alpha
\alpha = -\frac{mgl}{I}\sin{\theta} \sim -\frac{mgl}{I}\theta
\frac{d^2\theta}{dt^2} = \sim -\frac{mgl}{I}\theta
\theta(t) = - A \cos(\omega^2 t + \phi)\\ \omega = -\sqrt{\frac{mgl}{I}} = -\sqrt{\frac{mgl}{ml^2}} = -\sqrt{\frac{g}{l}}
T = 2\pi\sqrt{\frac{L}{g}}l

damped oscillations

m\frac{d^2x}{dt^2} = -kx
x(t) = e^{-\frac{bt}{2m}} \cos{\sqrt{\frac{k}{m} - \frac{b^2}{4m}}}
F_d = -bv
F_d = -bv
m\frac{d^2x}{dt^2} = -kx - bv = \\ =-kx -b\frac{dx}{dt}
m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0

not damped:

damped:

forced oscillations and resonances

m\frac{d^2x}{dt^2} = -kx
m\frac{d^2x}{dt^2} = -kx + F \cos{\omega t}
A = \frac{F}{m}\frac{1}{\frac{k}{m} - \omega^2}

not forced:

forced:

natural frequency

SHO

forcing frequency

\omega << \frac{k}{m} => A = \frac{F}{k}
\omega ->\infty => A = 0
\omega =\frac{k}{m}~~~ => A -> \infty

forced oscillations and resonances

m\frac{d^2x}{dt^2} = -kx
m\frac{d^2x}{dt^2} = -kx + F \cos{\omega t}
A = \frac{F}{m}\frac{1}{\frac{k}{m} - \omega^2}

not forced:

forced:

natural frequency

SHO

forcing frequency

\omega << \frac{k}{m} => A = \frac{F}{k}
\omega ->\infty => A = 0
\omega =\frac{k}{m}~~~ => A -> \infty
\omega << \frac{k}{m} => A = \frac{F}{k}
\omega ->\infty => A = 0
\omega =\frac{k}{m}~~~ => A -> \infty

forced oscillations and resonances

m\frac{d^2x}{dt^2} = -kx
m\frac{d^2x}{dt^2} = -kx + F \cos{\omega t}
A = \frac{F}{m}\frac{1}{\frac{k}{m} - \omega^2}

not forced:

forced:

natural frequency

SHO

forcing frequency

\omega << \frac{k}{m} => A = \frac{F}{k}
\omega ->\infty => A = 0
\omega =\frac{k}{m}~~~ => A -> \infty

forced oscillations and resonances

\omega = \frac{2\pi}{f}\\ f_n = n f_1
n=1
n=2
n=3
n=4
n=5
n=6
f \propto
f \propto l T m

A classic example.... that is actually wrong!

A classic example.... that is actually wrong!

vortex shedding resonance

SHO energy

U =

Springs

H&R CH7 kinetic energy and work

\vec{F}_s = -k\vec{d}

Hooke's law

Conservation of Elastic Energy

U_{spring} = \frac{1}{2}kx^2

SHO energy

U =
U = \frac{1}{2}{kx^2}
K = \frac{1}{2}{mv^2} =
K = \frac{1}{2}{mv^2} = \frac{1}{2}{m\frac{d^2x}{dt^2}}

SHO energy

U =
U = \frac{1}{2}{kx^2}
K =\frac{1}{2}{m\frac{d^2x}{dt^2}}
K = \frac{1}{2}{m\frac{d^2x}{dt^2}} = \frac{1}{2}mA^2 \omega^2 \sin^2(\omega t + \phi)
\frac{dx}{dt} = -A\omega \sin{(\omega t + \phi)}
x = A \cos{(\omega t + \phi)}
\frac{d^2x}{dt^2} = -A\omega \cos{(\omega t + \phi)}
U = \frac{1}{2}{kx^2} = \frac{1}{2}kA^2 \cos^2(\omega t + \phi)
\omega = \sqrt{\frac{k}{m}}
K = \frac{1}{2}{m\frac{d^2x}{dt^2}} = \frac{1}{2}kA^2 \sin^2(\omega t + \phi)

SHO energy

U =
U = \frac{1}{2}{kx^2}
\frac{dx}{dt} = -A\omega \sin{(\omega t + \phi)}
x = A \cos{(\omega t + \phi)}
\frac{d^2x}{dt^2} = -A\omega \cos{(\omega t + \phi)}
U = \frac{1}{2}{kx^2} = \frac{1}{2}kA^2 \cos^2(\omega t + \phi)
\omega = \sqrt{\frac{k}{m}}
K = \frac{1}{2}{m\frac{dx}{dt}^2} = \frac{1}{2}kA^2 \sin^2(\omega t + \phi)
M.E. =
M.E. = U + K =
=\frac{1}{2} k A^2 (\cos^2({\omega t + \phi}) + \sin^2({\omega t + \phi})^2)=
=\frac{1}{2} k A^2

SHO energy

U =
U = \frac{1}{2}{kx^2}
\frac{dx}{dt} = -A\omega \sin{(\omega t + \phi)}
x = A \cos{(\omega t + \phi)}
\frac{d^2x}{dt^2} = -A\omega \cos{(\omega t + \phi)}
U = \frac{1}{2}{kx^2} = \frac{1}{2}kA^2 \cos^2(\omega t + \phi)
\omega = \sqrt{\frac{k}{m}}
K = \frac{1}{2}{m\frac{dx}{dt}^2} = \frac{1}{2}kA^2 \sin^2(\omega t + \phi)
M.E. =
M.E. = U + K =
=\frac{1}{2} k A^2
A = x_\mathrm{max}

phys207 oscillations

By federica bianco

phys207 oscillations

oscillations

  • 731