The back-and-forth method for Wasserstein gradient flows

Joint work with Matt Jacobs and Wonjun Lee (UCLA)

Flavien Léger (ENS PSL)

Wasserstein gradient flows

\[\partial_t\rho-\mathrm{div}(\rho\nabla\phi)=0,\]

\[\phi=\delta U(\rho)\]

 

on a domain \(\Omega\subset\mathbb{R}^2\), with initial condition \(\rho(t=0)=\rho_0\).

Slow diffusion

\[U(\rho)=\int_\Omega \rho(x)^m+V(x)\rho(x)\,dx,\]

\(m > 1\). \(V(x)\) can be \(+\infty\).

Incompressible energy

\[U(\rho)=\int_\Omega u_\infty(\rho(x))+V(x)\rho(x)\,dx,\]

Aggregation-diffusion

\[U(\rho)=\int_\Omega \rho(x)^m\,dx + \iint_\Omega |x-y|^2\rho(x)\rho(y)\,dxdy\]

u_\infty(\rho)=\begin{cases} 0\quad\text{if } 0\le \rho\le 1\\ +\infty\quad\text{otherwise} \end{cases}

porous medium equation

\(\partial_t\rho=\Delta\rho^m\).

JKO scheme

\[\rho^{(n+1)}=\argmin_\rho U(\rho)+\frac{1}{2\tau}W_2^2(\rho^{(n)},\rho)\]

→ need to solve problems of the form

 

\[\min_\rho \,U(\rho)+\frac{1}{2\tau}W_2^2(\mu,\rho)\]

 

for a fixed density \(\mu\).

Dual formulation

Primal:

Example 

\(U(\rho)=\iota_{\{\nu\}}(\rho)\) then \(U^*(\phi)=\langle\phi,\nu\rangle\).

\[\sup_{\phi,\psi}\,\langle\psi,\mu\rangle - U^*(\phi)\]

over \((\phi,\psi)\) s.t.

\[\psi(x)-\phi(y)\le\frac{|x-y|^2}{2\tau}.\]

\[\inf_\rho U(\rho)+\frac{1}{2\tau}W_2^2(\mu,\rho).\]

Dual:

Dual formulations

Lemma: \(U^*\) is increasing, i.e.

\[\phi_1\le\phi_2 \implies U^*(\phi_1)\le U^*(\phi_2).\]

\displaystyle\sup_{\psi(x)-\phi(y)\le\frac{|x-y|^2}{2\tau}}\langle\psi,\mu\rangle - U^*(\phi)

Dual formulations

\displaystyle\sup_{\psi(x)-\phi(y)\le\frac{|x-y|^2}{2\tau}}\langle\psi,\mu\rangle - U^*(\phi)

with \(\phi^c(x)=\inf_y\phi(y)+\frac{|x-y|^2}{2\tau}\),

        \(\psi^c(y)=\sup_x\psi(x)-\frac{|x-y|^2}{2\tau}\).

\[\sup_\phi\langle\phi^c,\mu\rangle-U^*(\phi)=:J(\phi)\]

 

\[\sup_\psi\langle\psi,\mu\rangle-U^*(\psi^c)=:I(\psi)\]

Dual formulations

→ unconstrained concave maximization problems

 

Recover \(\rho^*\) from \(\phi^*\) by

\[\rho^*=\delta U^*(\phi^*)\]

\[\sup_\phi\langle\phi^c,\mu\rangle-U^*(\phi)=:J(\phi)\]

 

\[\sup_\psi\langle\psi,\mu\rangle-U^*(\psi^c)=:I(\psi)\]

The power of duality

\[U(\rho)=\int_\Omega u_\infty(\rho(x))+V(x)\rho(x)\,dx.\]

\(\rho(x)=(u^*_\infty)'(\phi(x)-V(x))\) guaranteed to be \(0\) on obstacle.

Remark 

\[U^*(\phi)=\int_\Omega u^*_\infty(\phi(x)-V(x))\,dx\]

Back-and-forth algorithm

\(H\) is the Sobolev space

\[\|h\|_H^2=\int_\Omega\Theta_2|\nabla h(x)|^2+\Theta_1|h(x)|^2\,dx\]

\begin{aligned} \phi_{k+\frac 1 2}&=\phi_k+\nabla_{\!H}J(\phi_k),\\ \psi_{k+\frac 1 2}&=(\phi_{k+\frac 1 2})^c,\\ \psi_{k+1}&=\psi_{k+\frac 1 2}+\nabla_{\!H}I(\psi_{k+\frac 1 2}),\\ \phi_{k+1} &= (\psi_{k+1})^c \end{aligned}

\(\nabla_{\!H}J(\phi)=(\Theta_1\mathrm{Id}-\Theta_2\Delta)^{-1}\delta J(\phi)\)

What is \(\nabla_{\!H}J(\phi)\) ?

What is \(\delta J(\phi)\) ?

Recall

\begin{aligned} J(\phi)&=\langle\phi^c,\mu\rangle-U^*(\phi)\\ &=:F(\phi)-U^*(\phi) \end{aligned}

Formula: \(\delta F(\phi)=T_{\phi\#}\mu\), where

\[T_\phi(x)=\argmin_y\phi(y)+\frac{|x-y|^2}{2\tau}\]

Why \(H\) ?

Gradient ascent of \(J\) → get Hessian bound

\[0\le -\delta^2\!J(\phi)(h,h)\le \|h\|_H^2\]

\(J=F-U^*\) with \(F(\phi)=\langle\phi^c,\mu\rangle\)

 

\[-\delta^2\!F(\phi)(h,h)=\tau\int_\Omega\nabla h(x)\cdot\mathrm{cof}(DT_\phi^{-1}(x))\nabla h(x)\,\mu(T_\phi^{-1}(x))dx\]

Why \(H\) ?

\[U^*(\phi)=\int_\Omega u^*_\infty(\phi(x)-V(x))\,dx\]

\[\delta^2\!U^*(\phi)(h,h)\le C_\textrm{trace} \int_{\tilde\Omega} |\nabla h(x)|^2+|h(x)|^2\,dx\]

\[\delta^2U^*(\phi)(h,h)=\int_{\{\phi-V=0\}} |h(z)|^2\,d\sigma(z)\]

Movies

Slow diffusion (porous medium eq)

\(V(x)=-\sin(5\pi x_1)\sin(3\pi x_2)\)

\(512\times 512\) points

\(m=2\)

\(m=4\)

Slow diffusion

\(m=4\)

\(V(x)=\|x-a\|^2\)

\(512\times 512\) points

Incompressible

\(V(x)=\|x-a\|^2\)

\(1024\times 1024\) points

Aggregation-diffusion

\[U(\rho)=\int \rho(x)^3dx+\iint |x-y|^2\rho(x)\rho(y)\,dxdy\]

Thanks!

(mokaplan 2021-01-20) Wasserstein gradient flows

By Flavien Léger

(mokaplan 2021-01-20) Wasserstein gradient flows

  • 1,205