The back-and-forth method for Wasserstein gradient flows
Joint work with Matt Jacobs and Wonjun Lee (UCLA)


Flavien Léger (ENS PSL)
Wasserstein gradient flows
∂tρ−div(ρ∇ϕ)=0,
ϕ=δU(ρ)
on a domain Ω⊂R2, with initial condition ρ(t=0)=ρ0.
Slow diffusion
U(ρ)=∫Ωρ(x)m+V(x)ρ(x)dx,
m>1. V(x) can be +∞.

Incompressible energy
U(ρ)=∫Ωu∞(ρ(x))+V(x)ρ(x)dx,
Aggregation-diffusion
U(ρ)=∫Ωρ(x)mdx+∬Ω∣x−y∣2ρ(x)ρ(y)dxdy

porous medium equation
∂tρ=Δρm.
JKO scheme
ρ(n+1)=ρargminU(ρ)+2τ1W22(ρ(n),ρ)
→ need to solve problems of the form
ρminU(ρ)+2τ1W22(μ,ρ)
for a fixed density μ.
Dual formulation
Primal:
Example
U(ρ)=ι{ν}(ρ) then U∗(ϕ)=⟨ϕ,ν⟩.
ϕ,ψsup⟨ψ,μ⟩−U∗(ϕ)
over (ϕ,ψ) s.t.
ψ(x)−ϕ(y)≤2τ∣x−y∣2.
ρinfU(ρ)+2τ1W22(μ,ρ).
Dual:
Dual formulations
Lemma: U∗ is increasing, i.e.
ϕ1≤ϕ2⟹U∗(ϕ1)≤U∗(ϕ2).
Dual formulations
with ϕc(x)=infyϕ(y)+2τ∣x−y∣2,
ψc(y)=supxψ(x)−2τ∣x−y∣2.
☇
ϕsup⟨ϕc,μ⟩−U∗(ϕ)=:J(ϕ)
ψsup⟨ψ,μ⟩−U∗(ψc)=:I(ψ)
Dual formulations
→ unconstrained concave maximization problems
→ Recover ρ∗ from ϕ∗ by
ρ∗=δU∗(ϕ∗)
ϕsup⟨ϕc,μ⟩−U∗(ϕ)=:J(ϕ)
ψsup⟨ψ,μ⟩−U∗(ψc)=:I(ψ)
The power of duality
U(ρ)=∫Ωu∞(ρ(x))+V(x)ρ(x)dx.


ρ(x)=(u∞∗)′(ϕ(x)−V(x)) guaranteed to be 0 on obstacle.
Remark

U∗(ϕ)=∫Ωu∞∗(ϕ(x)−V(x))dx
☇
Back-and-forth algorithm
H is the Sobolev space
∥h∥H2=∫ΩΘ2∣∇h(x)∣2+Θ1∣h(x)∣2dx
∇HJ(ϕ)=(Θ1Id−Θ2Δ)−1δJ(ϕ)
What is ∇HJ(ϕ) ?
What is δJ(ϕ) ?
Recall
Formula: δF(ϕ)=Tϕ#μ, where
Tϕ(x)=yargminϕ(y)+2τ∣x−y∣2
Why H ?
Gradient ascent of J → get Hessian bound
0≤−δ2J(ϕ)(h,h)≤∥h∥H2
J=F−U∗ with F(ϕ)=⟨ϕc,μ⟩
−δ2F(ϕ)(h,h)=τ∫Ω∇h(x)⋅cof(DTϕ−1(x))∇h(x)μ(Tϕ−1(x))dx
Why H ?
U∗(ϕ)=∫Ωu∞∗(ϕ(x)−V(x))dx

δ2U∗(ϕ)(h,h)≤Ctrace∫Ω~∣∇h(x)∣2+∣h(x)∣2dx

δ2U∗(ϕ)(h,h)=∫{ϕ−V=0}∣h(z)∣2dσ(z)
Movies
Slow diffusion (porous medium eq)
V(x)=−sin(5πx1)sin(3πx2)
512×512 points
m=2
m=4

Slow diffusion
m=4
V(x)=∥x−a∥2
512×512 points
Incompressible
V(x)=∥x−a∥2
1024×1024 points
Aggregation-diffusion
U(ρ)=∫ρ(x)3dx+∬∣x−y∣2ρ(x)ρ(y)dxdy
Thanks!
(mokaplan 2021-01-20) Wasserstein gradient flows
By Flavien Léger
(mokaplan 2021-01-20) Wasserstein gradient flows
- 1,265