BAND STRUCTURES

DENSITY OF STATES

SPIN DEGREES OF FREEDOM

[\hat{S}_x,\hat{S}_y]=i \hbar \hat{S}_{z} \\ [\hat{S}_y,\hat{S}_z]=i \hbar \hat{S}_{x} \\ [\hat{S}_z,\hat{S}_x]=i \hbar \hat{S}_{y} \\
[\hat{S}^2,\hat{S}_{x,y,z}]=0
[\hat{L}_x,\hat{L}_y]=i \hbar \hat{L}_{z} \\ [\hat{L}_y,\hat{L}_z]=i \hbar \hat{L}_{x} \\ [\hat{L}_z,\hat{L}_x]=i \hbar \hat{L}_{y} \\
[\hat{L}^2,\hat{L}_{x,y,z}]=0

Angular Momentum

Angular Momentum

Spin

SPIN: EIGENVALUES AND EIGENFUNCTIONS

\begin{dcases} \hat{S}_z \chi_{s,m_s} = \hbar m_s \chi_{s,m_s} \\[10pt] \hat{S}^2 \chi_{s,m_s} = \hbar^2 s (s+1) \chi_{s,m_s} \end{dcases}

with \(s=0,1/2,1,3/2,2,...\)

and \( -s \le m_s \le s\)

The value of the spin is a feature of the elementary particle and it cannot be changed

Fermions: semi-integer

  • Electron: \( s=\frac{1}{2}, m_s=\pm\frac{1}{2} \)

  • Proton: \( s= \frac{1}{2}, m_s=\pm\frac{1}{2} \)

  • Neutron: \( s= \frac{1}{2}, m_s=\pm\frac{1}{2} \)

Bosons: integer

  • Photon: \( s=0, m_s=0 \)

  • Higgs: \( s=0, m_s=0 \)

  • \(W^{+},W^{+},Z^{0}:\) \( s=1, m_s=-1,0,1 \)

SPIN: LABELLING THE ELECTRON EIGENFUNCTIONS

\psi_{n,l,m}(\vec{r})
\varphi_{n,k,m_{s}}(\vec{r})

Hydrogen Atom

Electron in Solid

Quantum Numbers

  • \(n:\) energy

  • \(l:\) angular momentum

  • \(m:\) z-angular momentum

Quantum Numbers

  • \(n:\) energy

  • \(k:\) crystal momentum

  • \(m_s:\) z-spin

k
E
-\frac{g}{2}
\frac{g}{2}
E_g

SPIN DEGREES OF FREEDOM

COUNTING THE AVAILABLE STATES: DENSITY OF STATES

k
E
-\frac{g}{2}
\frac{g}{2}
E_g

THE STARTING POINT: A 1D PERIODIC LATTICE OF ATOMS

BORN VON-KARMAN BOUNDARY CONDITIONS

a
x
L
\varphi_{n,k,m_{s}}(x) = \varphi_{n,k,m_{s}}(x+L)
\begin{align*} e^{i k x} f_{n,k,m_s}(x) & = e^{i k (x+L)} f_{n,k,m_s}(x+L) \\ & = e^{i k x} e^{i k L} f_{n,k,m_s}(x) \end{align*}
e^{i k L} = 1
k = n \frac{2 \pi}{L}, \, n=0,1,2, \ldots

COUNTING THE AVAILABLE STATES: DENSITY OF STATES

k
E
-\frac{g}{2}
\frac{g}{2}
E_g
g(E) = \frac{1}{V}\frac{dN}{dE} = \frac{\text{Number of states}}{\text{Unit of energy}}
N = 2 * \frac{\frac{2 \pi}{a}}{\frac{2 \pi}{L}} = 2 \frac{L}{a} = 2 * (\text{Number of unit cells})

DENSITY OF STATES: FREE ELECTRON GAS

\begin{dcases} \frac{1}{m_{v}^*}=-\frac{1}{\hbar^2} \frac{\partial^2 E_{v}}{\partial k^2} \\ \frac{1}{m_{c}^*}=\frac{1}{\hbar^2} \frac{\partial^2 E_{c}}{\partial k^2} \end{dcases}
\begin{dcases} E_v(k)=\frac{p_v^2}{2 m_v^*} \\ E_c(k)=E_g + \frac{p_c^2}{2 m_c^*} \end{dcases}

Effective mass

"Free" Electrons

DENSITY OF STATES: FREE ELECTRON GAS

\begin{dcases} \frac{1}{m_{v}^*}=-\frac{1}{\hbar^2} \frac{\partial^2 E_{v}}{\partial k^2} \\ \frac{1}{m_{c}^*}=\frac{1}{\hbar^2} \frac{\partial^2 E_{c}}{\partial k^2} \end{dcases}
\begin{dcases} E_v(k)=\frac{p_v^2}{2 m_v^*} \\ E_c(k)=E_g + \frac{p_c^2}{2 m_c^*} \end{dcases}

Effective mass

"Free" Electrons

 A FREE PARTICLE IN THREE DIMENSIONS

H(\vec{r},\vec{p}) = \frac{\vec{p}^2}{2 m} = \frac{p_x^2}{2 m} + \frac{p_y^2}{2 m} +\frac{p_z^2}{2 m}
\hat{H}(\vec{r},\hat{\vec{p}}) = \frac{\hat{p}_x^2}{2 m} + \frac{\hat{p}_y^2}{2 m} +\frac{\hat{p}_z^2}{2 m}
\hat{H} = -\bigg(\frac{\hbar^2}{2 m}\frac{\partial^2}{\partial x ^2} +\frac{\hbar^2}{2 m}\frac{\partial^2}{\partial y ^2} +\frac{\hbar^2}{2 m}\frac{\partial^2}{\partial z ^2} \bigg) = -\frac{\hbar^2}{2 m} \vec{\nabla}^2

N FREE ELECTRONS IN THREE DIMENSIONS

\hat{H}\left(\vec{r}_1, \vec{r}_2, \ldots \vec{r}_N\right)=-\sum_{i=1}^N \frac{\hbar^2}{2 m} \nabla_i^2=\sum_{i=1}^N \hat{H}_i
\psi_{\vec{k}}(x, y, z)=\psi_{\vec{k}}(\vec{r})=\frac{1}{V^{1 / 2}} e^{i \vec{k} \cdot \vec{r}} =\frac{1}{V^{1 / 2}} e^{i (k_x x + k_y y +k_z z)}
E_{\vec{k}}=\frac{\hbar^2\left(k_x^2+k_y^2+k_z^2\right)}{2 m}

BORN VON-KARMAN BOUNDARY CONDITIONS

IN THREE DIMENSIONS

\begin{align*} \psi_{\vec{k}}(x + L, y, z) & = \psi_{\vec{k}}(x , y, z) \\ & \Downarrow \\ e^{i (k_x (x+L) + k_y y +k_z z)} & = e^{i k_x L }e^{i (k_x x + k_y y +k_z z)} \\ & \Downarrow \\ e^{i k_x L } & = 1 \\ & \Downarrow \\ k_x = l \frac{2 \pi}{L} &\text{ with } l \in \mathbb{Z} \end{align*}
\begin{align*} \psi_{\vec{k}}(x, y + L, z) & = \psi_{\vec{k}}(x , y, z) \\ & \Downarrow \\ e^{i (k_x x + k_y (y+L) +k_z z)} & = e^{i k_y L }e^{i (k_x x + k_y y +k_z z)} \\ & \Downarrow \\ e^{i k_y L } & = 1 \\ & \Downarrow \\ k_y = m \frac{2 \pi}{L} &\text{ with } m \in \mathbb{Z} \end{align*}
\begin{align*} \psi_{\vec{k}}(x, y, z + L) & = \psi_{\vec{k}}(x , y, z) \\ & \Downarrow \\ e^{i (k_x x + k_y y +k_z (z+L)} & = e^{i k_z L }e^{i (k_x x + k_y y +k_z z)} \\ & \Downarrow \\ e^{i k_z L } & = 1 \\ & \Downarrow \\ k_z = n \frac{2 \pi}{L} &\text{ with } n \in \mathbb{Z} \end{align*}

L

L

L

COUNTING THE STATES

k_x = l \frac{2 \pi}{L} \text{ with } l \in \mathbb{Z}
k_z = n \frac{2 \pi}{L} \text{ with } n\in \mathbb{Z}
k_y = m \frac{2 \pi}{L} \text{ with } m \in \mathbb{Z}
E = \frac{\hbar |\vec{k}|^2}{2m}
k_x
k_y
\frac{2 \pi}{L}
\frac{2 \pi}{L}
k+dk
k

COUNTING THE STATES

k_x
k_y
\frac{2 \pi}{L}
\frac{2 \pi}{L}
k+dk
k
\begin{dcases} V_{sphere}(k) = 2*\frac{4}{3} \pi k^3 \\[10pt] V_{cell} = \bigg( \frac{2 \pi}{L} \bigg)^3 \end{dcases}
N(k) = \frac{V_{sphere}(k)}{V_{cell}} = \frac{V}{3 \pi^2} k^3
N(E) = \frac{V}{3 \pi^2} \left(\frac{2 m E}{\hbar^2}\right)^{3 / 2}
k = \sqrt{\frac{2 m E}{\hbar^2}}

DENSITY OF STATES FOR A 3D FREE ELECTRON GAS

k_x
k_y
\frac{2 \pi}{L}
\frac{2 \pi}{L}
k+dk
k
g(E) = \frac{1}{V}\frac{dN(E)}{dE} = \frac{m}{\hbar^2 \pi^2} \sqrt{\frac{2 m E}{\hbar^2}}

FERMI ENERGY FOR A 3D FREE ELECTRON GAS

k_x
k_y
\frac{2 \pi}{L}
\frac{2 \pi}{L}
k+dk
k
N(E) = \frac{V}{3 \pi^2} \left(\frac{2 m E}{\hbar^2}\right)^{3 / 2}
E_{F} = \frac{\hbar^2}{2m} \left( \frac{3 N \pi^2}{V} \right)^{\frac{2}{3}} \\

FERMI ENERGY AND THE CHEMICAL POTENTIAL

\begin{dcases} \mathrm{d} U=T \mathrm{~d} S-P \mathrm{~d} V+\sum_{i=1}^n \mu_i \mathrm{~d} N_i \\ \mu_i=\left(\frac{\partial U}{\partial N_i}\right)_{S, V, N_{j \neq i}} \end{dcases}
E_{F} = \frac{\hbar^2}{2m} \left( \frac{3 N \pi^2}{V} \right)^{\frac{2}{3}} \\

 The chemical potential \(\mu\) is the energy that can be absorbed or released due to a change of the particle number

\begin{dcases} \mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V + \sum_{i=1}^n \mu_i \mathrm{~d} N_i \\ \mu_i=\left(\frac{\partial F}{\partial N_i}\right)_{T, V, N_{j \neq i}} \end{dcases}
F \equiv U-T S,

Helmholtz Free Energy

E_{F} \simeq \mu
E_{F}

FILLING THE AVAILABLE STATES

3 states - 2 particles example

Maxwell-Boltzmann

Bose-Einstein

Fermi-Dirac

A

A

A

A

B

B

B

B

A

B

B

A

A

B

A

B

A

B

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

\sigma_{1} = \{ n_1, k_1, m_{s_1} \},
\sigma_{2} = \{ n_2, k_2, m_{s_2} \},
\sigma_{3} = \{ n_3, k_3, m_{s_3} \}
\sigma_1
\sigma_2
\sigma_3
\sigma_1
\sigma_2
\sigma_3
\sigma_1
\sigma_2
\sigma_3

9 microstates \(\mathcal{S}\)

6 microstates \(\mathcal{S}\)

3 microstates \(\mathcal{S}\)

BOSE - EINSTEIN CONDENSATION

A

A

\sigma_1
\ldots
\sigma_N

A

A

A

A

A

A

A

A

A

A

FILLING THE AVAILABLE STATES

N electrons

\begin{dcases} N \text{ electrons} \\ \sigma_{s} = \{ n_s, k_s, m_{s_s} \} \\ E_s \Leftrightarrow \sigma_{s} \\ n_s =0,1 \Rightarrow \text{Occupation number} \\ \mathcal{S} \Rightarrow \text{Microstate} \end{dcases}
\mathcal{S} \text{ Microstate}
E_{\mathcal{S}} = \sum_{s=1}^{N} n_s E_s

PROBABILITY OF A MICROSTATE

and average occupational probability \( \overline{n}_s \)

\mathcal{S} \text{ Microstate}
E_{\mathcal{S}} = \sum_{s=1}^{N} n_s E_s
\mathcal{P}(\mathcal{S})=\frac{e^{-\frac{E_{\mathcal{S}}}{k_B T}}}{\sum\limits_{\mathcal{All \, S}} e^{-\frac{E_{\mathcal{S}}}{k_B T}}}
\overline{n}_s = \sum\limits_{\mathcal{All \, S}} n_s(\mathcal{S}) \mathcal{P}(\mathcal{S})
\overline{n}_s?
\bar{n}_s(E_s) =\frac{1}{e^{\frac{E_s-\mu}{k_B T}}+1} = \frac{1}{e^{\frac{E_s-E_{F}}{k_B T}}+1}

FERMI DIRAC STATISTICS

\bar{n}_s(E_s) =\frac{1}{e^{\frac{E_s-\mu}{k_B T}}+1} = \frac{1}{e^{\frac{E_s-E_{F}}{k_B T}}+1}

A NEW LOOK AT THE BANDS

k
E
-\frac{g}{2}
\frac{g}{2}
E_g
x
E

A NEW LOOK AT THE BANDS

x
E
E_F
x
E
E_F

Metal

Insulator

A NEW LOOK AT THE BANDS

x
E
E_F

Semiconductor, T=0 K

Semiconductor, T>0 K

x
E
E_F

LOOKING BACK AT THE PERIODIC TABLE

Semiconductors

GROUP IV SEMICONDUCTORS

Si

7

28.085

Silicon

E_g = 5.5 \, eV
E_g = 1.14 \, eV
E_g = 0.67 \, eV

III-V SEMICONDUCTORS

GaN

GaAs

E_g = 3.4 \, eV
E_g = 1.42 \, eV

II-VI SEMICONDUCTORS

CdS

ZnO

E_g = 2.42 \, eV
E_g = 3.73 \, eV

ELECTRONIC AND OPTICAL PROPERTIES

REFRACTIVE INDEX

CdS

ZnO

Real

\begin{dcases} n = \text{ Real refractive index} \\[10pt] k_n = \frac{2 \pi n}{\lambda} \\[10pt] v = \frac{\omega}{k_n} = \frac{c}{n} \end{dcases}

Complex

\begin{dcases} n_c = n + i\kappa = \text{ Complex refractive index} \\[10pt] k_n = \frac{2 \pi n}{\lambda} \\[10pt] v = \frac{\omega}{k_n} = \frac{c}{n} \end{dcases}

ELECTRONIC AND OPTICAL PROPERTIES

REFRACTIVE INDEX

CdS

ZnO

\begin{aligned} \mathbf{E}(x, t) & =\operatorname{Re}\left[\mathbf{E}_0 e^{i(k_c x-\omega t)}\right] \\ & =\operatorname{Re}\left[\mathbf{E}_0 e^{i\left(2 \pi(n+i \kappa) x / \lambda_0-\omega t\right)}\right] \\ & =e^{-2 \pi \kappa x / \lambda_0} \operatorname{Re}\left[\mathbf{E}_0 e^{i(k_n x-\omega t)}\right] \end{aligned}

The imaginary part \( \kappa \) of the refractive index is responsible for the absorption of light inside the material.

ELECTRONIC AND OPTICAL PROPERTIES

REFRACTIVE INDEX

CdS

ZnO

HOW MANY ELECTRONS AND HOLES IN THE BANDS?

OCCUPATION PROBABILITY FOR SILICON

E_g \simeq 1.1 \, eV
E_f \simeq 0.55 \, eV
k_{B}T \simeq 0.025 \, eV \, \text{at T=300 K}
\overline{n}_s \simeq 10^{-10}
E_g
E_f

OCCUPATION PROBABILITY FOR SILICON

\begin{dcases} \frac{1}{m_{v}^*}=-\frac{1}{\hbar^2} \frac{\partial^2 E_{v}}{\partial k^2} \\ \frac{1}{m_{c}^*}=\frac{1}{\hbar^2} \frac{\partial^2 E_{c}}{\partial k^2} \end{dcases}
\begin{dcases} E_v(k)=E_v -\frac{\hbar^2 k^2}{2 m_v^*} \\[10pt] E_c(k)=E_c + \frac{\hbar^2 k^2}{2 m_c^*} \end{dcases}

Effective mass

"Free" Electrons

E_g
E_f
\bar{n}_{s,e} (E) = f_e(E) = \frac{1}{e^{\frac{E-E_{F}}{k_B T}}+1}

WHAT ABOUT THE HOLES?

\begin{align*} \end{align*}
\begin{align*} \bar{n}_{s,h} (E) = f_h(E) & = (1-f_e(E)) \\ & = \frac{1}{e^{\frac{E_{F}-E}{k_B T}}+1} \end{align*}

HOLE - ELECTRON DENSITY AT BOTH BANDS

\begin{align*} \end{align*}
\begin{aligned} & n_c(T)=\int_{E_c}^{\infty} g_c(E) f(E) d E=\int_{E_c}^{\infty} g_c(E) \frac{1}{e^{(E-E_f) / k_B T}+1} d E \\[20pt] & p_v(T)=\int_{-\infty}^{E_v} g_v(E)(1-f(E)) d E=\int_{-\infty}^{E_v} g_v(E)\left(\frac{1}{e^{(E_f-E) / k_B T}+1}\right) d E \end{aligned}
g_c(E) = \frac{m^*_c}{\hbar^2 \pi^2} \sqrt{\frac{2 m (E-E_c)}{\hbar^2}}
g_v(E) = \frac{m^*_v}{\hbar^2 \pi^2} \sqrt{\frac{2 m (E_v-E)}{\hbar^2}}

NON-DEGENERATE SEMICONDUCTOR APPROXIMATION

\begin{align*} \end{align*}
\begin{aligned} & E_c-E_f \gg k_B T \\ & E_f-E_v \gg k_B T \end{aligned}
\frac{1}{e^{(E-E_f) / k_B T}+1} \approx e^{-(E-E_f) / k_B T}, \, E>E_c
\frac{1}{e^{(E_f-E) / k_B T}+1} \approx e^{-(E_f-E) / k_B T}, E_v>E

HOLE - ELECTRON DENSITY AT BOTH BANDS

\begin{aligned} & n_c(T)=\int_{E_c}^{\infty} g_c(E) f_e(E) d E \approx(\underbrace{\int_{E_c}^{\infty} g_c(E) e^{-\left(E-E_c\right) / k_B T} d E}_{N_c(T)}) e^{-\left(E_c-E_f\right) /k_B T}=N_c(T) e^{-\left(E_c-E_f\right) /k_B T} \\[50pt] & p_v(T)=\int_{E_c}^{\infty} g_v(E)(1-f_e(E)) d E \approx(\underbrace{\int_{-\infty}^{E_v} g_v(E) e^{-\left(E_v-E\right) / k_B T} d E}_{P_v(T)}) e^{-\left(E_f-E_v\right) / k_B T}=P_v(T) e^{-\left(E_f-E_v\right) / k_B T} \end{aligned}
N_c(T) \Rightarrow \text{Effective electron density of states} \\[10pt] N_p(T) \Rightarrow \text{Effective hole density of states}

EFFECTIVE DENSITIES

\begin{aligned} & N_c(T)=\int_{E_c}^{\infty} g_c(E) e^{-\left(E-E_c\right) / k_B T} d E=\frac{1}{4}\left(\frac{2 m_c^* k_B T}{\pi \hbar^2}\right)^{3 / 2} \\[20pt] & P_v(T)=\int_{-\infty}^{E_v} g_v(E) e^{-\left(E_v-E\right) / k_B T} d E=\frac{1}{4}\left(\frac{2 m_v^* k_B T}{\pi \hbar^2}\right)^{3 / 2} \end{aligned}

LAW OF MASS ACTION

\begin{aligned} n_c(T) p_v(T) & = N_c(T) P_v(T) e^{\left(E_v-E_c\right)/ k_B T} \\ & = N_c(T) P_v(T) e^{-E_g / k_B T} \end{aligned}

UNDERSTANDING THE LAW OF MASS ACTION

\begin{aligned} n_c(T) p_v(T) & = N_c(T) P_v(T) e^{\left(E_v-E_c\right)/ k_B T} \\ & = N_c(T) P_v(T) e^{-E_g / k_B T} \end{aligned}

The product \(n_c \cdot p_v\) is constant at a fixed temperature and is a function of the band gap

INTRINSIC CARRIER CONCENTRATION

n_c = p_v \equiv n_i
n_i = \sqrt{N_c P_v} e^{-E_g/ 2 k_B T}
E_g(Si) = 1.1 eV \Rightarrow n_i \approx 10^{10} \, cm^{-3}
E_g(Ge) = 0.67 eV \Rightarrow n_i \approx 2 \cdot 10^{13} \, cm^{-3}

COMPUTING THE FERMI ENERGY \(E_f\)

n_c=N_c e^{-\frac{\left(E_c-E_f\right)}{k_B T}}=n_i=\sqrt{P_v N_c} e^{-\frac{E_g}{2 K_B T}}
e^{\frac{E_f-E_c+E_g / 2}{k_B T}}=\sqrt{\frac{P_v}{N_c}}=\left(\frac{m_v^*}{m_c^{*}}\right)^{3 / 4}
E_f=\frac{E_v+E_c}{2} + \frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)
E_f=E_v+\frac{1}{2} E_g+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)
E_f=E_c-\frac{1}{2} E_g+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right) \\

CHARGE TRANSPORT, CONDUCTIVITY AND MOBILITY:1

\begin{dcases} \vec{F}=-e \vec{E} \\ \vec{F}=m \frac{d \vec{v}}{d t} \end{dcases} \Rightarrow m \frac{d \vec{v}}{d t}=-e \vec{E} \Rightarrow \vec{v}(t)=-\frac{e E}{m} t
\begin{dcases} \vec{j}=n \cdot q \cdot \vec{v}, \text { where } n=\frac{N}{V} \\ \vec{v}=-\frac{e E}{m} t \end{dcases} \Rightarrow \begin{dcases} \vec{j}=n \cdot e \cdot \vec{v}=\sigma \vec{E} \\ \sigma=\frac{n e^2 t}{m} \end{dcases}
\vec{v}=-\frac{e E \tau}{m} \Rightarrow \sigma=\frac{n e^2 \tau}{m}

CHARGE TRANSPORT, CONDUCTIVITY AND MOBILITY:2

\sigma=\frac{n_c e^2 \tau_n}{m^*_c} + \frac{p_v e^2 \tau_p}{m^*_v}

In the case of semiconductor, conductivity has two kinds of carriers (electrons and holes) and both contributes to the conductivity

\sigma=n_c e \mu_n + p_v e \mu_p \, \text{ with } \, \begin{dcases} \mu_n = \frac{e \tau_n}{m^*_c}\\[10pt] \mu_p = \frac{e \tau_p}{m^*_v} \end{dcases} \text{ mobilities for electrons and holes}

CHARGE TRANSPORT, CONDUCTIVITY AND MOBILITY:3

\sigma=n_c e \mu_n + p_v e \mu_p \, \text{ with } \, \begin{dcases} \mu_n = \frac{e \tau_n}{m^*_c}\\[10pt] \mu_p = \frac{e \tau_p}{m^*_v} \end{dcases} \text{ mobilities for electrons and holes}

ARRANGEMENTS OF ATOMS: 1D

a
x

1D Lattice: \(\{\vec{R}\}, \, \vec{R}=ma, \, m \in \mathbb{Z}\)

-\frac{a}{2}
\frac{a}{2}

Wigner-Seitz Cell

a

Primitive Cell

ARRANGEMENTS OF ATOMS: 2D

Wigner-Seitz Cell

Primitive Cell

Rectangular

Square

Centered Rectangular

Oblique

Hexagonal

Voronoi Tesselation

3D ARRANGEMENTS OF ATOMS: BRAVAIS LATTICE

3D ARRANGEMENTS OF ATOMS: Wigner-Seitz Cell

ENGINEERING CARRIER CONCENTRATIONS

   II

VI

   III

   IV

V

\text{Si}: \, 1 s^2 2 s^2 2 p^6 3 s^2 3 p^2
3 s 3 p
sp3
\text{Si}: \, 1 s^2 2 s^2 2 p^6 3 s^2 3 p^2

N-TYPE DOPING: PHOSPHORUS

   II

VI

   III

   IV

V

\text{P}: \, 1 s^2 2 s^2 2 p^6 3 s^2 3 p^3
3 s 3 p
\text{P}: \, 1 s^2 2 s^2 2 p^6 3 s^2 3 p^3
sp3

P-TYPE DOPING: BORON

   II

VI

   III

   IV

V

\text{B}: \, 1 s^2 2 s^2 2 p^1
2 s 2 p
sp2
\text{B}: \, 1 s^2 2 s^2 2 p^1

N-TYPE AND P-TYPE DOPING

\text{P}: \, 1 s^2 2 s^2 2 p^6 3 s^2 3 p^3
sp3
sp2
\text{B}: \, 1 s^2 2 s^2 2 p^1
x
E
E_F
E_a

Acceptor Levels

x
E
E_F
E_d

Donor Levels

DEEP TRAPS: GOLD IMPURITIES

x
E
E_F
\text{deep trap}

HOW MUCH DOPING DO WE NEED FOR SILICON?

N-Type Doping

P-Type Doping

n_i^2=N_e P_v e^{-\frac{E_g}{k_B T}} \sim 10^{20} \mathrm{~cm}^{-6} \Rightarrow n_i \sim 10^{10} \mathrm{~cm}^{-3}

We replace one atom every million: \( \text{1 ppm} \)

\begin{dcases} n_{Si} \sim 10^{22} \mathrm{~cm}^{-3} \\ N_{D} \sim 10^{16} \mathrm{~cm}^{-3} \\ \end{dcases} \\ \Downarrow \\ n_c = n_i + N_D \sim N_D \sim 10^{16} \mathrm{~cm}^{-3} \\ \Downarrow \\ p_v = \frac{n_i^2}{n_c} \sim 10^{4} \mathrm{~cm}^{-3} \\
\begin{dcases} n_{Si} \sim 10^{22} \mathrm{~cm}^{-3} \\ N_{A} \sim 10^{16} \mathrm{~cm}^{-3} \\ \end{dcases} \\ \Downarrow \\ p_v = n_i + N_A \sim N_A \sim 10^{16} \mathrm{~cm}^{-3} \\ \Downarrow \\ n_c = \frac{n_i^2}{p_v} \sim 10^{4} \mathrm{~cm}^{-3} \\

EFFECT OF DOPING ON THE CONDUCTIVITY

N-Type Doping

P-Type Doping

\sigma_i=\frac{n_c e^2 \tau_n}{m^*_c} + \frac{p_v e^2 \tau_p}{m^*_v}
\sigma \sim \sigma_D = \frac{N_D e^2 \tau_n}{m^*_c} \sim 10^6 \sigma_i

The conductivity is dominated by the electron provided by the donor atoms

\sigma_i=\frac{n_c e^2 \tau_n}{m^*_c} + \frac{p_v e^2 \tau_p}{m^*_v}
\sigma \sim \sigma_A = \frac{N_A e^2 \tau_p}{m^*_v} \sim 10^6 \sigma_i

The conductivity is dominated by the holes provided by the acceptor atoms

EFFECT OF DOPING OVER THE FERMI LEVEL

\begin{aligned} n_c \approx N_D &, p_v \approx \frac{n_i^2}{N_D} \\ &\Downarrow \\ P_v e^{\left(E_v-E_f\right) / k_B T}=\frac{n_i^2}{N_D}&=n_i \frac{n_i}{N_D}=\sqrt{P_v N_c} e^{-E_g / 2 k_B T} \frac{n_i}{N_D} \\ & \Downarrow \\ e^{\left(E_f-E_v-\frac{E_g}{2}\right) / k_B T}&=\sqrt{\frac{P_v}{N_c}} \frac{N_D}{n_i} \\ & \Downarrow \\ e^{\left(E_f-E_v-\frac{E_g}{2}\right) / k_B T}&=\left(\frac{m_v^*}{m_c^*}\right)^{\frac{3}{4}} \frac{N_D}{n_i} \\ & \Downarrow \\ \end{aligned}

EFFECT OF DOPING OVER THE FERMI LEVEL

E_f=E_v+\frac{E_g}{2}+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)+k_B T \ln \left(\frac{N_D}{n_i}\right)=E_{f,i}+k_B T \ln \left(\frac{N_D}{n_i}\right)
E_f=E_v+\frac{E_g}{2}+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)-k_B T \ln \left(\frac{N_A}{n_i}\right)=E_{f,i}-k_B T \ln \left(\frac{N_A}{n_i}\right)

N-Type Doping

P-Type Doping

EFFECT OF DOPING OVER THE FERMI LEVEL

N-Type

Intrinsic

P-Type

Materials and Platforms for AI - Band Structure: Density of States

By Giovanni Pellegrini

Materials and Platforms for AI - Band Structure: Density of States

  • 147