19AIE201

Introduction to Robotics

Evaluation 4

19AIE201

Introduction to Robotics

Aadharsh Aadhithya                  -         CB.EN.U4AIE20001
Anirudh Edpuganti                     -         CB.EN.U4AIE20005

Madhav Kishor                            -         CB.EN.U4AIE20033

Onteddu Chaitanya Reddy        -         CB.EN.U4AIE20045
Pillalamarri Akshaya                   -         CB.EN.U4AIE20049

Team-1

19AIE201

Introduction to Robotics

Question 1

Elaborate and clearly explain standard DH parameters with examples of robot configurations taught in class

(i) 3R spatial Robot

(ii) SCARA Robot(4 DOF)

For the above cases do the comparison between standard DH parameters and modified DH parameters and point out the differences   

19AIE201

Introduction to Robotics

Question 1

DENAVIT - HARTENBERG

(D-H) Parameters

DENAVIT - HARTENBERG

(D-H) Parameters

DENAVIT - HARTENBERG

(D-H) Parameters

\theta_{j}

: angle between 

z_{j-1}
x_{j}
x_{j-1}

and

axes about the 

axis

DENAVIT - HARTENBERG

(D-H) Parameters

d_{j}

: distance from origin to 

z_{j-1}
x_{j}

axis

along

DENAVIT - HARTENBERG

(D-H) Parameters

a_{j}

: distance between 

z_{j-1}
x_{j}

axis

along

and

z_{j}

DENAVIT - HARTENBERG

(D-H) Parameters

\alpha_{j}

: angle between 

z_{j-1}
x_{j}

axis

along

and

z_{j}

DENAVIT - HARTENBERG

(D-H) Parameters

The homogeneous transformation is represented as

T^{j-1}_j = R_{z}(\theta_{j}) . T_z(d_{j}) . T_x(a_{j}) . R_x(\alpha_{j})

MODIFIED DENAVIT - HARTENBERG

(MDH) Parameters

MODIFIED DENAVIT - HARTENBERG

(MDH) Parameters

Basic difference 

MODIFIED DENAVIT - HARTENBERG

(MDH) Parameters

Basic difference 

( \alpha_{j-1}, a_{j-1} ,\theta_j , d_j )
(\theta_j , d_j , a_j , \alpha_j)
\rightarrow
O_{j-1}
O_{j}
z_{i-1}
x_{i-1}
y_{i-1}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
x_{i-1}
y_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j-1
j
O_{j-1}
O_{j}
z_{i-1}
x_{i-1}
y_{i-1}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j
\theta_j
\alpha_{j-1}
x_{i-1}
y_{i-1}
d_j
a_{j-1}
O_{j-1}
O_{j}
z_{i-1}
x_{i-1}
y_{i-1}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j-1
j
\theta_j
\alpha_{j-1}
x_{i-1}
y_{i-1}
d_j
a_{j-1}
O_{j-1}
O_{j}
z_{i-1}
x_{i-1}
y_{i-1}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j-1
j
\theta_j
\alpha_{j-1}
x_{i-1}
y_{i-1}
d_j
a_{j-1}
a_j
\theta_j
O_{j}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j-1
j
\theta_j
\alpha_{j-1}
x_{i-1}
y_{i-1}
d_j
a_{j-1}
a_j
\theta_j
O_{j-1}
z_{i-1}
x_{i-1}
y_{i-1}
O_{j}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j-1
j
\theta_j
\alpha_{j-1}
x_{i-1}
y_{i-1}
d_j
a_{j-1}
a_j
\theta_j
O_{j-1}
z_{i-1}
x_{i-1}
y_{i-1}
d_j
\alpha_j
O_{j}
z_{i}
x_{i}
y_{i}
O_{j-1}
O_{j}
z_{i-1}
z_{i}
x_{i}
y_{i}
MDH
j
j+1
DH
j-1
j
\theta_j
\alpha_{j-1}
x_{i-1}
y_{i-1}
d_j
a_{j-1}
a_j
\theta_j
O_{j-1}
z_{i-1}
x_{i-1}
d_j
\alpha_j
MDH
DH
\theta_j
\alpha_{j-1}
d_j
a_{j-1}
a_j
\theta_j
d_j
\alpha_j

MODIFIED DENAVIT - HARTENBERG

(MDH) Parameters

T^{j-1}_j = R_x(\alpha_{j-1}) . T_x(a_{j-1}) .R_{z}(\theta_{j}) . T_z(d_{j})

The homogeneous transformation is represented as

19AIE201

Introduction to Robotics

Question 1

3R Spatial Robot

\theta_j
d_j
a_j
\alpha_j
\theta_1
\theta_2
\theta_3
0
0.25
0
0
0.5
0
-90^{\circ}
0
0

DH

\alpha_{j-1}
a_{j-1}
\theta_j
d_j
\theta_1
\theta_2
\theta_3
0
0.25
0
0
0.5
0
-90^{\circ}
0
0

MDH

19AIE201

Introduction to Robotics

Question 1

SCARA Robot

\theta_j
d_j
a_j
\alpha_j
\theta_1
\theta_2
\theta_4
0
0
0
0
180^{\circ}
0
0

DH

\alpha_{j-1}
a_{j-1}
\theta_j
d_j
\theta_1
\theta_2
\theta_4
0
d
0
1
0
180^{\circ}
0
0

MDH

0
1
0
0
0
d
1
1
1
0
0
0
0

19AIE201

Introduction to Robotics

Question 2

Even though obsolete, one of the famous and well-studied industrial robot arm is PUMA-560 by Unimation company. The MDH parameter calculation of PUMA-560 will be discussed in class. Calculate the standard DH parameter by hand for PUMA 560. Compare the DH and MDH parameter table with those obtained from python and matlab robotic toolbox. Do the forward kinematics operation of PUMA 560 for atleast 3 joint configurations of the robot. 

19AIE201

Introduction to Robotics

Question 2

19AIE201

Introduction to Robotics

Question 2

\theta_j
d_j
a_j
\alpha_j
\theta_1
\theta_2
\theta_3
0
0.1
-90
0

DH

\alpha_{j-1}
a_{j-1}
\theta_j
d_j
\theta_1
\theta_2
\theta_4
0

MDH

1
0
1
1
0
0
\theta_4
\theta_5
\theta_6
-0.01
0
0
0
0
0
-0.01
90
-90
90
0
0
-90
90
-90
90
-0.01
0
0
0
0.1
1
-0.01
0
0
\theta_3
\theta_5
\theta_6

19AIE201

Introduction to Robotics

Question 3

Panda  by Franka-Emika is a redundant (7R configuration)  robot (short form for collaborative robot) like a human arm. Repeat the exercise in problem 3 for Panda robot as well.

\theta_j
d_j
a_j
\alpha_j
\theta_1
\theta_2
\theta_3
0.33
-0.825
-90
0

DH

\alpha_{j-1}
a_{j-1}
\theta_j
d_j
\theta_1
\theta_2
\theta_4
0

MDH

0
0
-0.088
0
0
\theta_4
\theta_5
\theta_6
0.316
0.384
0
0
0.088
0
-0.088
90
-90
90
0
-90
90
-90
90
0.0825
0
0.333
0
0.384
0.316
0
0
\theta_3
\theta_5
\theta_6
\theta_7
0.107
0.088
90
90
90
90
-0.0825
0.088
\theta_7
0.107

19AIE201

Introduction to Robotics

Question 4

  1. Do you think a seven axis robot like Panda is better than six axis robot like PUMA-560 in terms of operations. Do a detailed internet search and understand the advantages and disadvantages of using 6 vs 7 DOF robot. Split your group into two for the presentation of discussion of this problem, one subgroup should favour 6 DOF robot while the other should advocate for 7 DOF.

19AIE201

Introduction to Robotics

6 DOF Robots

  • The robotic manipulator such as PUMA 560 which has 6of will be less Expensive when compared to 7DOF robots
  • Since the number of degrees of freedom are less programming the robot becomes easy
  • 6DOF robots operate faster when compared to 7DOF robots
  • This kind of Robotic Manipulatore are used in assembly of automobile subcomponents

19AIE201

Introduction to Robotics

7 DOF Robots

  • 7DOF Robot manipulatoire such as panda arm can do more complex moments as human arm compared 6dof manipulators
  • This kind of robotic manipulators provides a narrow workspace
  • It has High accurate contact recognition, interpretation and reaction
  • This kind of Robotic manipulators are used for Curve welding

deck

By Incredeble us

deck

  • 40