19AIE205
Sleep stage classification using different ML algorithms
Python for Machine Learning
Aadharsh Aadhithya - CB.EN.U4AIE20001
Anirudh Edpuganti - CB.EN.U4AIE20005
Madhav Kishore - CB.EN.U4AIE20033
Onteddu Chaitanya Reddy - CB.EN.U4AIE20045
Pillalamarri Akshaya - CB.EN.U4AIE20049
Team-1
Sleep stage classification using different ML algorithms
DataSet
DataSet
Delta
Theta
Alpha
Beta
K-Complex
0.5-4
4-8
8-13
13-22
0.5-1.5
Hz
Hz
Hz
Hz
Hz
Continious Wavelet Transform
Time-Frequency Analysis Framework
Continious Wavelet Transform
Time-Frequency Analysis Framework
Continious Wavelet Transform
Time-Frequency Analysis Framework
Similarity
Measure
Mother
Wavelet
Continious Wavelet Transform
Time-Frequency Analysis Framework
Continious Wavelet Transform
Time-Frequency Analysis Framework
Continious Wavelet Transform
Time-Frequency Analysis Framework
Delta
Theta
Alpha
Beta1
K-Complex
0.5-4
4-8
8-13
13-22
0.5-1.5
Hz
Hz
Hz
Hz
Hz
Beta2
22-35
Hz
Sleep spindles
12-14
Hz
CWT
Delta
Theta
Alpha
Beta1
K-Complex
0.5-4
4-8
8-13
13-22
0.5-1.5
Hz
Hz
Hz
Hz
Hz
Beta2
22-35
Hz
Sleep spindles
12-14
Hz
CWT
Features
Random Forest
Random Forest
Dataset
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
idx | x1 | x2 | x3 | y |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
idx | x1 | x2 | x3 | y |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
idx | x1 | x2 | x3 | y |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
idx | x1 | x2 | x3 | y |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
idx | x1 | x2 | x3 | y |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
idx | x1 | x2 | x3 | y |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Random Forest
Dataset
idx | x1 | x2 | x3 | y |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
idx | x1 | x2 | x3 | y |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Data 1
Random Forest
Dataset
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
idx | x1 | x2 | x3 | y |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Data 1
Random Forest
Dataset
3 | 1.1 | 3.1 | 2.8 | 3 |
---|
idx | x1 | x2 | x3 | y |
---|
. | . | . | . | . |
---|
. | . | . | . | . |
---|
1 | 1.2 | 3.4 | 4.5 | 0 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
2 | 1.5 | 2.3 | 4.1 | 1 |
---|
Data 1
Random Feature Selection
Random Forest
Dataset
Data 1
Random Forest
Dataset
Data 1
Data 2
Random Forest
Dataset
Data 1
Data 2
Data 3
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
Bootstrapped Data
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
Random Forest
Dataset
Data 1
Decision Tree
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
Random Forest
Dataset
Data 1
x1 | x2 | x3 |
---|
x1 | x2 |
---|---|
1.3 | 3.8 |
1.3 | 3.8 | 4.9 |
---|
Predict
Random Forest
Dataset
Data 1
x1 | x2 | x3 |
---|
1.3 | 3.8 | 4.9 |
---|
Predict
x1 | x2 |
---|---|
1.3 | 3.8 |
Prediction
0
Random Forest
Dataset
x1 | x2 | x3 |
---|
1.3 | 3.8 | 4.9 |
---|
Predict
Prediction
0
Data 2
x1 | x3 |
---|---|
1.3 | 4.9 |
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
0
0
3
1
0
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
0
0
3
1
0
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
0
0
3
1
0
Majority Voting
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
0
0
3
1
0
Majority Voting
0
Random Forest
Dataset
Data 1
Data 2
Data 3
Data 4
Data 5
0
0
3
1
0
x1 | x2 | x3 |
---|
1.3 | 3.8 | 4.9 |
---|
Labelled as
y |
---|
0 |
---|
Support Vector Machine
Support Vector Machine
Text
Binary Classification
Support Vector Machine
Text
Binary Classification
Yes
No
Support Vector Machine
Text
Multi-Class Classification
Support Vector Machine
Text
Multi-Class Classification
Class 1
Class 2
Class 3
Support Vector Machine
Text
Multi-Class Classification
Class 1
Class 2
Class 3
Types
Support Vector Machine
Text
Multi-Class Classification
One vs Rest
One vs One
Support Vector Machine
Text
Multi-Class Classification
One vs Rest
One vs One
One vs One
Support Vector Machine
Text
Multi-Class Classification
One vs One
Labels
Support Vector Machine
Text
Multi-Class Classification
One vs One
Support Vector Machine
Text
Multi-Class Classification
One vs One
One vs Rest
Support Vector Machine
Text
Multi-Class Classification
One vs Rest
Support Vector Machine
Text
Multi-Class Classification
One vs Rest
INTUITION
Support Vector Machine
Text
One vs Rest
INTUITION
1
2
3
Text
Text
Text
Text
New data
Text
Ask
Text
Ask
Text
Ask
Text
Ask
Text
K-Nearest Neighbours
K-Nearest Neighbours
K-Nearest Neighbours
New data
K-Nearest Neighbours
New data
Suppose K=1
K-Nearest Neighbours
New data
Suppose K=1
K-Nearest Neighbours
New data
Suppose K=1
K-Nearest Neighbours
New data
Suppose K=2
K-Nearest Neighbours
New data
Suppose K=2
K-Nearest Neighbours
New data
Suppose K=4
K-Nearest Neighbours
New data
Suppose K=4
Multi Layer Network
Multi Layer Network
Multi Layer Network
Multi Layer Network
Forward Pass
Multi Layer Network
Forward Pass
Multi Layer Network
Forward Pass
Multi Layer Network
Forward Pass
Multi Layer Network
Forward Pass
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
We can derive
To Be Computed
Multi Layer Network
BackPropagation
We can derive
To Be Computed
Here , We Can Resort To Using The Chain Rule .
How G changes with x?
Changing x changes h(x)
Changing h changes g
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Follow The RED Path !
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
For Softmax output layer and Sigmoid Activation function
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
Multi Layer Network
BackPropagation
So , now , we have all the vectorized components to build our chain
Multi Layer Network
Full Story
Thank you Mam!
PML Proj S3
By Incredeble us
PML Proj S3
- 55