No-Code Deep Learning

Getting started with

No-Code Deep Learning

Getting started with

  1. Simulink
  2. Network Designer App

Deep Learning???

weight

height

Deep Learning???

weight

height

??

Deep Learning???

weight

height

??
y_i = mx_i + c
(x_i,y_i)

Deep Learning???

weight

height

??
y_i = mx_i + c
(x_i,y_i)
y=f(x)
x
y

Deep Learning???

y=f(x)
x
y

NN

Deep Learning???

Primer: NN's

Deep Learning???

Primer: CNN's

Deep Learning???

 CNN's

Deep Learning???

Deep Learning???

 CNN's

Deep Learning???

Deep Learning???

 Why Convolutions?

Deep Learning???

\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix}
y_{i+1} - y_{i-1}
x_{i+1} - x_{i-1}

Deep Learning???

 Why Convolutions?

Deep Learning???

\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix}
y_{i+1} - y_{i-1}
x_{i+1} - x_{i-1}

Differencing

Deep Learning???

 Why Convolutions?

Deep Learning???

CNNS: Learn Filters ( Learn to extract features)

No-Code Deep Learning

Agenda

  1. Inference In Simulink
    1. Working with Speech Data
    2. Working with ECG data
    3. Working with Image Data
  2. How to use Deep Network Designer App
  3. Hands-on Demo using Deep Network Designer App

5 Minute Introduction to......

No-Code Deep Learning

Pre-reqs

Matlab 2020b+

Deep Learning Tool box

Check if u have this

No-Code Deep Learning

Getting Started

y=f(x)

No-Code Deep Learning

Getting Started

y=f(x)
x
y

No-Code Deep Learning

Getting Started

y=f(x)
x
y

NN

No-Code Deep Learning

Getting Started

y=f(x)
x
y

NN

They are universal approximators!!!!!!!!!!!

No-Code Deep Learning

They are universal approximators!!!!!!!!!!!

Why Deep Learning??

No-Code Deep Learning

Why Deep Learning??

No-Code Deep Learning

Why Deep Learning??

Deep Learning Systems

No-Code Deep Learning

Getting Started

y=f(x)
x
y

NN

Data

labels

No-Code Deep Learning

Getting Started

x
y

NN

Data

labels

class NaturalSceneClassification(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        self.network = nn.Sequential(
            
            nn.Conv2d(3, 32, kernel_size = 3, padding = 1),
            nn.ReLU(),
            nn.Conv2d(32,64, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        
            nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.Conv2d(128 ,128, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            
            nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.Conv2d(256,256, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            
            nn.Flatten(),
            nn.Linear(82944,1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Linear(512,6)
        )
    
    def forward(self, xb):
        return self.network(xb)

No-Code Deep Learning

Getting Started

x
y

NN

Data

labels

class NaturalSceneClassification(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        self.network = nn.Sequential(
            
            nn.Conv2d(3, 32, kernel_size = 3, padding = 1),
            nn.ReLU(),
            nn.Conv2d(32,64, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
        
            nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.Conv2d(128 ,128, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            
            nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.Conv2d(256,256, kernel_size = 3, stride = 1, padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(2,2),
            
            nn.Flatten(),
            nn.Linear(82944,1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Linear(512,6)
        )
    
    def forward(self, xb):
        return self.network(xb)

No-Code Deep Learning

Workflow in DeepLearning Network Designer App

No-Code Deep Learning

Workflow in DeepLearning Network Designer App

Design Network

Import Data

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');

imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');

Import Data

Import Data

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Exporting

Transfer Learning with Network Designer

Easy Projects and papers

No-Code Deep Learning

By Incredeble us

No-Code Deep Learning

  • 58