Aim 3: Posterior Sampling and Uncertainty

 

September 12, 2023

Posterior Sampling Strategies Overview

\nabla_x \log~p_t(x_t | y) = \nabla_x \log~p_t(x_t) + \nabla_x \log~p_t(y | x_t)

\(\uparrow\)

SNIPS, DDRM: Analytically for linear forward models

[Jalal, 21]: Approximation for noiseless setting

\(\uparrow\)

Unconditional score network

\(\uparrow\)

Intractable in general

1. Ignore and project onto data manifold

[Chung, 21][Chung, 22][Song, 22]

2. Estimate it: DPS, \(\Pi\)DGM, ReSample

\(x_0\)

\(x_t\)

\(y\)

Intractability of \(p_t(y | x_t)\)

\(x_0\)

\(x_t\)

\(y\)

for the graphical model above

\[x_t \perp \!\!\! \perp y \mid x_0\]

p_t(y | x_t) = \int_{x_0} p(x_0 | x_t)p(y | x_0)\text{d}x_0

\(\uparrow\)

tractable

\(\uparrow\)

need to sample from entire diffusion model 

Diffusion Posterior Sampling (DPS) [Chung, 23]

p_t(y | x_t) = \mathbb{E}_{x \sim p(x_0 | x_t)}[p(y | x)]

estimate \(p_t(y | x_t)\) by pushing expectation in

p_t(y | x_t) \approx p(y | \hat{x}_0),~\hat{x}_0 \coloneqq \mathbb{E}_{x \sim p(x_0 | x_t)}[x]

can be written in closed-form via Tweedie's formula

Diffusion Posterior Sampling (DPS) [Chung, 23]

y = \mathcal{A}(x_0) + v,~v \sim \mathcal{N}(0, \sigma^2\mathbb{I})
\log p(y | x_t) \approx \log p(y | \hat{x}_0(x_t))\\ \implies \nabla_x \log p(y | x_t) \approx -\frac{1}{\sigma^2} \nabla_{x_t} \|y - \mathcal{A}(\hat{x}_0(x_t))\|^2_2

Diffusion Posterior Sampling (DPS) [Chung, 23]

y = \mathcal{A}(x_0) + v,~v \sim \mathcal{N}(0, \sigma^2\mathbb{I})
\log p(y | x_t) \approx \log p(y | \hat{x}_0(x_t))\\ \implies \nabla_x \log p(y | x_t) \approx -\frac{1}{\sigma^2} \nabla_{x_t} \|y - \mathcal{A}(\hat{x}_0(x_t))\|^2_2

\(\mathcal{A}\) can be nonlinear as long as it is differentiable

performance is very brittle to choice of \(\zeta_i\)

ReSample [Song, 23]

Latent-DPS

\[\mathcal{E}:~\mathbb{R}^d \to \mathbb{R}^k,~ \mathcal{D}:~\mathbb{R}^k \to \mathbb{R}^d\]

with

\[z = \mathcal{E}(x),~x = \mathcal{D}(z),~k \ll d\]

ReSample [Song, 23]

ReSample [Song, 23]

ReSample [Song, 23]

simulated sinograms with parallel-beam geometry with 25 projection angles over 180 degrees

\(\Pi\)GDM [Song, 23]

Recall

\[p_t(y | x_t) = \int_{x_0} p(x_0 | x_t)p(y | x_0)\text{d}x_0\]

and assume

\[p(x_0 | x_t) \approx \mathcal{N}(\hat{x}_0, r^2_t\mathbb{I})\]

Suppose

\[y = Hx_0 + v,~v \sim \mathcal{N}(0, \sigma^2_y\mathbb{I})\]

then

\(\Pi\)GDM [Song, 23]

For a general noiseless forward function \(h\) with

\[h(h^\dagger(h(x))) = x\]

\(h\) need not be differentiable

does not require tuning of stepsize

Fourier Diffusion Models [Tivnan, 23]

\(x_0\)

\(x_t\)

\(y\)

forward process converges to the measurement model distribution

reverse sampling is unconditional sampling but the model works for one forward process only

LoDoPaB-CT Dataset [Leuschner, 21] [link]

Based on the TCIA LIDC-IDRI  Dataset [link]

\[y = - \ln\left(\frac{n_{x_0}}{n_0}\right),\quad~n_{x_0} \sim \text{Pois}(n_0e^{-Ax_0})\]

\(x_0\): 40keV ground-truth image (in HU)

\(A\): forward operator

\(n_0\): expected number of photons with no attenuation

Note that in the noiseless setting

\[y = Ax_0\]

as expected

LoDoPaB-CT Dataset [Leuschner, 21] [link]

\(A\) implemented with the ODL package [link]

\(xy\) spatial resolution = 0.5 mm, image size = 512 pixels \(\implies\) domain = 25.6 cm.

1000 angles and 512 detectors

40 keV ground-truth

sinogram

FBP reconstruction

LoDoPaB-CT Dataset [Leuschner, 21] [link]

Simulated observations and FBP reconstructions

ground-truth

simulated observations & reconstructions

-
-

std

mean

=
=

The Conditional Score is Invariant

to Change of Variable

Recall

\[y = - \ln\left(\frac{n_{x_0}}{n_0}\right) = f(n_{x_0}) \neq Ax_0 + v\]

by change of variable rule

\[g(x) = f^{-1}(x)\]

and

\[p(y \mid x_0) = p(n_{x_0} = g(y)) \cdot (-g'(y))\]

\[\implies \nabla_{x_0} \log p(y \mid x_0) = \nabla_{x_0} \log p(n_{x_0} = g(y))\]

The Conditional Score is Invariant

to Change of Variable

Recall

\[y = - \ln\left(\frac{n_{x_0}}{n_0}\right) = f(n_{x_0}) \neq Ax_0 + v\]

let

\[g(x) = f^{-1}(x)\]

and by change of variable rule

\[p(y \mid x_0) = p(n_{x_0} = g(y)) \cdot (-g'(y))\]

\[\implies \nabla_{x_0} \log p(y \mid x_0) = \nabla_{x_0} \log p(n_{x_0} = g(y))\]

\[\downarrow\]

Can Use DPS Approximation

\[\nabla_{x_t} \log p(y \mid x_t) \approx \nabla_{x_t} \log p(y \mid \hat{x}_0(x_t)) = \nabla_{x_t} \log p(n_{\hat{x}_0(x_t)} = g(y))\]

Next Steps

Implement CT Measurement model on:

- lung: LoDoPaB-CT

- abdomen: AbdomenCT-1K

- brain: RSNA ICH Challenge

Train diffusion models for each dataset:

- Both VP & VE SDE (LoDoPaB-CT/VP in progress)

Implement conditional sampling strategies

- Modified DPS

- How to modify \(\Pi\)GDM without normal approx?

 

[09/12/23] Aim 3: Posterior Sampling and Uncertainty

By Jacopo Teneggi

[09/12/23] Aim 3: Posterior Sampling and Uncertainty

  • 45