Aim 3: Posterior Sampling and Uncertainty

 

November 22, 2022

A common notion of uncertainty

original

perturbed

mean

std

A common notion of uncertainty

std

What does this measure of uncertainty tell us?

 

1. Regions of the reconstruction with higher variance

2. Range of where a new sample will be

3. How far the ground-truth image is

Our setting

1. The ground truth image

\[X \sim p(X)\]

 

2. The observation process

\[Y = X + v,~v \sim \mathcal{N}(0, \sigma^2 \mathbb{I})\]

 

3. The sampling procedure

\[Z = f(Y) \sim \mathcal{Q}_Y \approx p(X \mid Y)\]

Three sources of randomness

Our setting

\begin{vmatrix} X_1 & X_2 & \dots & X_n \\ \hline \overset{+v \sim \mathcal{N}(0, \sigma^2 \mathbb{I})}{\downarrow} & \downarrow & & \downarrow \\ Y_1 & Y_2 & \dots & Y_n \\ \hline \overset{f(Y) \approx p(X \mid Y)}{\downarrow} & \downarrow & & \downarrow \\ Z_{1,1} & Z_{2,1} & & Z_{n,1} \\ \vdots & \vdots & & \vdots \\ Z_{1,m} & Z_{2,m} & & Z_{n,m} \end{vmatrix}

original

perturbed

sampled

Question

Fix a pair \((x, y)\), and sample \(m\) times from \(f(y)\),

where will the \((m + 1)\)-th sample fall?

Conformal predictions

Coverage [Shafer and Vovk, 2008][Angelopoulos and Bates, 2022]

\[\mathbb{P}\left[Y_{\text{test}} \in \mathcal{C}(X_{\text{test}})\right] \geq 1 - \alpha\]

In our case, entrywise coverage

\[\forall j \in [d],~\mathbb{P}\left[f(y)_j \in \mathcal{I}(y)_j\right] \geq 1 - \alpha\]

Theorem (Entrywise calibrated quantiles) Let \(\hat{l}_{\alpha},\hat{u}_{\alpha}\) be the \(\lfloor (m+1) \alpha/2 \rfloor / m\) and \(\lceil (m+1)(1 - \alpha/2) \rceil / m\) empirical quantiles of \(f(y)_j\) over \(m\) i.i.d. samples. Then,

\[\mathcal{I}(y)_j = [\hat{l}_{\alpha}, \hat{u}_{\alpha}]\]

provides entrywise coverage

Entrywise calibrated quantiles

original

\(\hat{l}_{\alpha}\)

\(\hat{u}_{\alpha}\)

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

Entrywise calibrated quantiles

original

\(\hat{l}_{\alpha}\)

\(\hat{u}_{\alpha}\)

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

Comparison of standard deviation with entrywise calibrated quantiles

std

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

Calibrated quantiles distribution

\(Q_1\\ \Delta_{\text{HU}} \leq 7\)

\(Q_2\\\Delta_{\text{HU}} \in (7, 8]\)

\(Q_3\\\Delta_{\text{HU}} \in (8, 55]\)

\(Q_4\\\Delta_{\text{HU}} > 55\)

original

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

Calibrated quantiles distribution

original

\(Q_1\\\Delta_{\text{HU}} \leq 7\)

\(Q_2\\\Delta_{\text{HU}} \in (7, 8]\)

\(Q_3\\\Delta_{\text{HU}} \in (8, 9]\)

\(Q_4\\\Delta_{\text{HU}} > 9\)

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

Calibrated quantiles distribution

original

\(Q_3\\\Delta_{\text{HU}} \in (8, 34]\)

\(Q_4\\\Delta_{\text{HU}} > 34\)

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

\(Q_1\\\Delta_{\text{HU}} \leq 7\)

\(Q_2\\\Delta_{\text{HU}} \in (7, 8]\)

Calibrated quantiles distribution

original

\(Q_3\\\Delta_{\text{HU}} \in (8, 44]\)

\(Q_4\\\Delta_{\text{HU}} > 44\)

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

\(Q_1\\\Delta_{\text{HU}} \leq 7\)

\(Q_2\\\Delta_{\text{HU}} \in (7, 8]\)

Calibrated quantiles

What does this measure of uncertainty tell us?

 

1. Regions of the reconstruction with higher variance

2. Range of where a new sample will be

3. How far the ground-truth image is

\(\hat{u}_{\alpha} - \hat{l}_{\alpha}\)

Risk control [Bates, 21]

For a pair \((x, y)\) define

\[\ell(x, \mathcal{I}(y)) = \frac{\#\{j \in [d]:~x_j \notin \mathcal{I}(y)_j\}}{d}\]

Definition (Risk-Controlling Prediction Set) A random set predictor \(\mathcal{I}:~\mathcal{Y} \to \mathcal{P}(\mathcal{X})\) is an \((\epsilon,~\delta)\)-RCPS if

\[\mathbb{P}\left[\mathbb{E}_{(X, Y)}\left[\ell(X, \mathcal{I}(Y)\right] \leq \epsilon\right] \geq 1-\delta\]

Image-to-Image Regression [Angelopolous, 22]

[11/22/22] Aim 3: Posterior Sampling and Uncertainty

By Jacopo Teneggi

[11/22/22] Aim 3: Posterior Sampling and Uncertainty

  • 66