Homomorphisms and Varieties of Algebra
2020 James B. Wilson
Colorado State University

Objectives
Prove varieties are closed to Quotients and Homomorphic images.
What happens to polynomials under homomorphisms.
x−2x2+1
x2+1
(x−2)−1
x2
1
x
x
u−1
u=x−2
+
×
×
x
−(1+1)
−v
v=1+1
1
1
+
u
−1
v
−
+
∘
∘
Operator
Variable
Polynomial/Word
(Meta-language)
A generalized polynomial
f(x−2x2+1)
x2+1
(x−2)−1
x2
1
x
x
u−1
u=x−2
+
×
×
x
−(1+1)
−v
v=1+1
1
1
+
u
−1
v
−
+
∘
∘
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism f:A→B
f(x−2x2+1)
f(x2+1)
f((x−2)−1)
x2
1
x
x
u−1
u=x−2
+
×
×
x
−(1+1)
−v
v=1+1
1
1
+
u
−1
v
−
+
∘
∘
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism f:A→B
f(x−2x2+1)
f(x2+1)
f((x−2)−1)
f(x2)
f(1)
x
x
f(u−1)
u=x−2
+
×
×
x
−(1+1)
−v
v=1+1
1
1
+
u
−1
v
−
+
∘
∘
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism f:A→B
f(x−2x2+1)
f(x2+1)
f((x−2)−1)
f(x2)
1B
f(x)
f(x)
f(u−1)
f(u)=f(x−2)
+
×
×
x
−(1+1)
−v
v=1+1
1
1
+
f(u)
−1
v
−
+
∘
∘
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism f:A→B
f(x−2x2+1)
f(x2+1)
f((x−2)−1)
f(x2)
1B
f(x)
f(x)
f(u−1)
f(u)=f(x−2)
+
×
×
f(x)
f(−(1+1))
−f(v)
f(v)=f(1+1)
1B
1B
+
f(u)
−1
f(v)
−
+
∘
∘
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism f:A→B
Summary
- Given a polynomial/word/formula Φ(x1,x2,…
- An algebraic structure A with constants a1,a2,…:A
- a homomorphism f:A→B
- f(Φ(a1,a2,…))=Φ(f(a1),f(a2),…).
With out all the symbols...
f∘Φ=Φ∘f
Theorem.
Fix a signature σ. If A is in a variety V(Φ) and φ:A→B is surjective homomorphism, then B
a in V(Φ).
Proof.
- For b∗=b1,b2,…:B, by surjectivity, there are a∗=a1,a2,…:A with bi=f(ai).
- For any law Φ(xs)=Γ(xs) of V, Φ(a∗)=Γ(a∗).
- Φ(b∗)=Φ(f(a∗))=f∘Φ(a∗)=f∘Γ(a∗)=Γ(f(a∗))=Γ(b∗)
Theorem.
Fix a signature σ. If A is in a variety V(Φ) and φ:A→B is surjective homomorphism, then B
a in V(Φ).
Corollary.
Varieties of algebras are closed under quotients.
Proof. A/≡ induces a homomorphims f:A→A/≡ which is surjective. □
Homomorphisms and Varieties of Algebra
By James Wilson
Homomorphisms and Varieties of Algebra
Closure homomorphic images in varieties.
- 615