Applications of fractional diffusion in option pricing
Jan Korbel
CCS Satelite on Econophysics, 27th October, Lyon
slides available at: slides.com/jankorbel
Option pricing
- First option pricing model (Black and Scholes 1973)
- based on ordinary Brownian motion
- Nobel prize in economics (Scholes, Merton) - 1997
-
In financial crises or in complex markets, the model cannot catch
realistic market dynamics- large drops, sudden shocks, memory effects
- Finite moment log-stable model (Carr and Wu 2003)
- based on Lévy-stable fractional diffusion
- enables large drops
- We generalize the models by using space-time fractional diffusion equation
Space-time fractional diffusion
The STFD equation is defined as
$$ \left({}^*_0 \mathcal{D}^\gamma_t - \mu \ {}^\theta \mathcal{D}_x^{\alpha}\right) g(x,t) = 0$$
Caputo derivative: \( {}^*_{t_0} \mathcal{D}^\gamma_t f(t) = \frac{1}{\Gamma(\lceil \gamma \rceil - \gamma)} \int_{t_0}^t \mathrm{d} \tau \frac{f^{\lceil \gamma \rceil}(\tau)}{(t-\tau)^{\gamma + 1 - \lceil \gamma \rceil}}\)
Riesz-Feller derivative: \(\mathcal{F}[{}^{\theta} \mathcal{D}^\alpha_x f(x)](k) = -|k|^\alpha e^{i \, \mathrm{sign}(k) \theta \pi/2} \mathcal{F}[f(x)](k) \)
Solution can be defined in terms of Mellin-Barnes transform
$$g_{\alpha,\theta,\gamma}(x,t) = \frac{1}{2 \pi i} \frac{1}{\alpha x} \int_{c-i \infty}^{c+i \infty} \frac{\Gamma(\frac{y}{\alpha}) \Gamma(1-\frac{y}{\alpha})\Gamma(1-y)}{\Gamma(1-\frac{\gamma}{\alpha} y)\Gamma(\frac{\alpha-\theta}{2 \alpha} y) \Gamma(1- \frac{\alpha-\theta}{2 \alpha} y)} \left(\frac{x}{-\mu t}\right)^y \mathrm{d} y$$
[1] Physica A 449 (2016) 200-214
Space-time fractional diffusion
- \(\gamma=1, \alpha=2\) - ordinary Gaussian diffusion
- \(\gamma=1, \alpha<2\) - Lévy-stable diffusion
- \(\gamma \neq 1, \alpha=2\) - diffusion with memory
- \(\gamma \neq 1, \alpha<2\) - space-time fractional diffusion
[6] Mathematics 7 (9) (2019) 796
Space-time fractional option pricing
Price of European call option: $$C(S,K,\tau) = \int_{-\infty}^\infty \max\{S e^{(r+\mu) \tau + x}-K,0\} g_{\alpha,\theta,\gamma}(x,\tau) \mathrm{d} x$$
Interpretation of parameters:
- \(\theta = \max\{-\alpha, \alpha-2\}\)
- maximally asymmetric distribution
- power-law probability of drops (negative Lévy tail)
- Gaussian probability of rises (positive exponential tail
- \(\alpha < 2\) - risk redistribution to large drops
- \(\gamma \) - risk redistribution in time
- \(\gamma < 1\) shorter contracts are more risky
- \(\gamma > 1\) longer contracts are more risky
[1] Physica A 449 (2016) 200-214; [3] Fractal Fract. 2 (1) (2018) 15
Double-series representation
By using residue summation in \(\mathbb{C}^2\) it is possible to express the price in terms of rapidly-convergent double series ( \(\mathcal{L} = \log \frac{S}{K} + r \tau\) )
$$C(S,K,\tau) = \frac{K e^{-r \tau}}{\alpha} \sum_{n=0}^\infty \sum_{m=1}^\infty \frac{1}{n! \Gamma\left(1 + \frac{m-n}{\alpha}\right)}(\mathcal{L}+\mu \tau)^{n}(-\mu \tau)^{\frac{m-n}{2}}$$
[4] Fract. Calc. Appl. Anal. 21 (4) (2018) 981-1004
Subordinator representation
\(g_{\alpha,\theta,\gamma}(x,t)\) can be represented as a subordinated process
$$g_{\alpha,\theta,\gamma}(x,t) = \int_0^\infty \mathrm{d} l K_\gamma(t,l) L_{\alpha}^\theta(l,x)$$
- \(L_{\alpha}^\theta(l,x)\) - Lévy-stable distribution with scaling parameter \(l\)
- \(K_\gamma(t,l\) - subordinator (smearing kernel)
- \(K_\gamma(t,l) = \frac{t}{l^{1+1/\gamma} \gamma} L_\gamma^{\gamma}\left(\frac{t}{l^{1/\gamma}}\right)\)
- We compare with other subordinated models
- Variance gamma \(K_\lambda(t,l) = \lambda e^{\lambda (-t/l)}\)
- Negative inverse-gamma \(K_{\alpha,\beta}(t,l) = \frac{e^{-\frac{\beta }{t/l}} \left(\frac{\beta }{t/l}\right)^{\alpha }}{t/l \Gamma (\alpha )}\)
[1] Physica A 449 (2016) 200-214; [8] Risks 8 (4) (2020) 124
Subordinator representation
Other results
- Space-time fractional option pricing with varying order of fractional derivatives
- [3] FCAA 19 (6) (2016) 1414-1433
- Pricing of more exotic types of options (American, digital,...) under the space-time fractional diffusion model and formulas for the risk sensitives ("the Greeks" - Gamma, Delta, Rho,...)
- [5] Risks 7 (2) (2019) 36; 10.3390/risks7020036
- [6] Mathematics 7 (9) (2019) 796; 10.3390/math7090796
-
Option pricing with more complicated fractional diffusion equation based on Hilfer-Prabhakar fractional derivative
- [7] Fract. Calc. Appl. Anal. 23 (4) (2020) 996-1012
Thank you!
Keywords: option pricing, Black–Scholes model, fractional calculus, fractional diffusion, long-term memory, Lévy stable processes, jump processes, fractional Brownian motion, subordinated models, Bergomi model, rough volatility models
Applications of fractional diffusion in option pricing
By Jan Korbel
Applications of fractional diffusion in option pricing
- 59