\varphi = \dfrac{1+\sqrt{5}}{2}

Golden

Dragon

\varphi = \dfrac{1+\sqrt{5}}{2}
\varphi = \dfrac{1+\sqrt{5}}{2}
(\pm 1,\pm 1,\pm 1)
\left(0,\pm \varphi,\pm \frac{1}{\varphi}\right)
\left(\pm \frac{1}{\varphi}, 0,\pm \varphi\right)
\left(\pm \varphi, \pm \frac{1}{\varphi}, 0\right)
\varphi = \dfrac{1+\sqrt{5}}{2}
\text{Step } 1
\text{Step } 2
\text{Step } 3
\text{Step } 4
\text{Step } 14
\varphi = \dfrac{1+\sqrt{5}}{2}
\text{Step } 1
\text{Step } 2
\text{Step } 3
\text{Step } 4
\varphi = \dfrac{1+\sqrt{5}}{2}
r
r^2
r= \left(\frac{1}{\varphi}\right)^{\frac{1}{\varphi}}

Watch the video at BeautyInMath

Author: Juan Carlos Ponce Campuzano

If you like my work, you can support me in Patreon

Fractal: Golden dragon

By Juan Carlos Ponce Campuzano

Fractal: Golden dragon

Discover the fascinating world of the golden ratio and its mathematical properties through a concise step-by-step exploration. Uncover how this unique constant influences various aspects of art, nature, and design! Video: https://youtu.be/QzVxZP6r7xE

  • 50