Juan Carlos Ponce Campuzano
Independent Mathematics Educator
Centers
Radii
\(\overline{C_1P_1}\)
\(= r_1\)
\(\overline{C_1P_1}= r_1\)
\(\overline{C_2P_2}= r_2\)
\(= r_1 s\)
\(\overline{C_1P_1}= r_1\)
\(\overline{C_2P_2}= r_2\)
\(\overline{C_3P_3}= r_3\)
\(= r_1 s\)
\(=r_1 s^2 \)
\(= r_2 s \)
\(=\left( r_1 s \right) s\)
\(\overline{C_1P_1}= r_1\)
\(\overline{C_2P_2}= r_2\)
\(\overline{C_3P_3}= r_3\)
Here \(\,0<s<1\)
\(\vdots \)
\(\overline{C_nP_n}= r_n = r_1 s^{n-1} \)
\(= r_1 s\)
\(=r_1 s^2 \)
\(= r_2 s \)
\(=\left( r_1 s \right) s\)
\(\,r_1 = \overline{C_1C_2} + \overline{C_2P_1},\)
\(\Rightarrow \overline{C_1C_2} = r_1-\overline{C_2P_1}\)
\(= r_1-r_1s\)
\(= r_1\left(1-s\right)\)
\(\,r_1 = \overline{C_1C_2} + \overline{C_2P_1},\)
\(\Rightarrow \overline{C_1C_2} = r_1-\overline{C_2P_1}\)
\(\,r_2 = \overline{C_2C_3} + \overline{C_3P_2},\)
\(\Rightarrow \overline{C_2C_3} = r_2-\overline{C_3P_2}\)
\(= r_1-r_1s\)
\(= r_1\left(1-s\right)\)
\(= r_1s-r_1 s^2\)
\(= r_1s\left(1- s\right)\)
\(\,r_1 = \overline{C_1C_2} + \overline{C_2P_1},\)
\(\Rightarrow \overline{C_1C_2} = r_1-\overline{C_2P_1}\)
\(\,r_2 = \overline{C_2C_3} + \overline{C_3P_2},\)
\(\Rightarrow \overline{C_2C_3} = r_2-\overline{C_3P_2}\)
\(= r_1-r_1s\)
\(= r_1\left(1-s\right)\)
\(= r_1s-r_1 s^2\)
\(= r_1s\left(1- s\right)\)
\(\overline{C_3C_4}= r_1 s^{2}\left(1-s\right) \)
\(\,r_1 = \overline{C_1C_2} + \overline{C_2P_1},\)
\(\Rightarrow \overline{C_1C_2} = r_1-\overline{C_2P_1}\)
\(\vdots \)
\(\overline{C_nC_{n+1}}= r_1 s^{n-1}\left(1-s\right) \)
\(\,r_2 = \overline{C_2C_3} + \overline{C_3P_2},\)
\(\Rightarrow \overline{C_2C_3} = r_2-\overline{C_3P_2}\)
\(= r_1-r_1s\)
\(= r_1\left(1-s\right)\)
\(= r_1s-r_1 s^2\)
\(= r_1s\left(1- s\right)\)
\(\overline{C_3C_4}= r_1 s^{2}\left(1-s\right) \)
Again \(\,0<s<1!\)
\(\overline{C_1C_2} =r_1(1-s)\)
\(\vdots \)
\(\overline{C_nC_{n+1}}= r_1 s^{n-1}\left(1-s\right) \)
\(\overline{C_2C_3} = r_1s\left(1-s\right)\)
\(\overline{C_3C_4}= r_1 s^{2}\left(1-s\right) \)
Lenght of segments
Now let's find the coordinates of each point
\(C_n =\left(?, ?\right)\)
Set
Set
\(\leftarrow\)Polar form
Set
Set
Set
Set
Set
Set
Set
Radii
Centers
Radii
Centers
s = Slider(0.1, 1.5, 0.01)
t = Slider(0, 2pi, 0.01)
n = Slider(0, 50, 1)
Ln = 0...n
LR = Zip(s^k, k, Ln)
LP = Join({(0, 0)}, Zip((s^k * (1 - s); (k+1) * t), k, Ln))
LS = Zip(Sum(LP, k), k, Ln+1)
LC = Zip(Circle(P, r), P, LS, r, LR)
Link in the description
There is also a conexion with
Complex Numbers!
Plot all the centers
and join them
for \(z=x+iy\)
Geometrical representation
of the geometric series
Geometrical representation of the
Geometric series
Geometric series
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Re-write both in cartesian form!
Relationship between the Geometric series and the points \(C_n\)
Factorize \((1-s)\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
Relationship between the Geometric series and the points \(C_n\)
we just need to adjust the expression
To obtain the same result
with
with
Multiply by
Add this
with
Links in the description
Patreons:
Christopher-Alexander Hermans, Maciej Lasota, Miguel Díaz, bleh, Dennis Watson, Doug Kuhlmann, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
Patreons:
Christopher-Alexander Hermans, Maciej Lasota, Miguel Díaz, bleh, Dennis Watson, Doug Kuhlmann, Newnome Beauton, Adam Parrott, Sophia Wood (Fractal Kitty), pmben, Abei, Edward Huff.
By Juan Carlos Ponce Campuzano
Construction of rotating circles.