On the real cycle class map

Department of Quantitative Theory and Methods
Jeremy Jacobson
Current
-
Mathematical intuition
-
Definition
Kolmogorov
Every continuous function of several variables defined on the unit cube can be represented as a superposition of continuous functions of one variable and the operation of addition (1957).
f(x1,x2,…,xn)=i=1∑2n+1fi(j=1∑nϕi,j(xj))
f(x_1,x_2, \ldots, x_n) = \sum\limits_{i=1}^{2n+1}f_i(\sum\limits_{j=1}^{n}\phi_{i,j}(x_j))
Thus, it is as if there are no functions of several variables at all. There are only simple combinations of functions of one variable.


f1
f_1
fi
f_i
f2n+1
f_{2n+1}
f(x1,x2,…,xn)=i=1∑2n+1fi(j=1∑nϕi,j(xj))
f(x_1,x_2, \ldots, x_n) = \sum\limits_{i=1}^{2n+1}f_i(\sum\limits_{j=1}^{n}\phi_{i,j}(x_j))
x1
x_1
x2
x_2
xn
x_n
ϕ1,n
\phi_{1,n}
ϕ2n+1,n
\phi_{2n+1,n}
ϕ2n+1,1
\phi_{2n+1,1}
ϕ1,1
\phi_{1,1}
ϕ1,2
\phi_{1,2}
ϕ2n+1,2
\phi_{2n+1,2}
f
f
f(x1,x2,⋯,xn)=ϕ(i=1∑nwixi+θ)
f(x_1,x_2,\cdots,x_n) = \phi(\sum\limits_{i=1}^n w_i x_i+\theta)
w1
w_1
w2
w_2
wn
w_n
x1
x_1
x2
x_2
xn
x_n
Rn→fR1
\mathbb{R}^n \stackrel{f}{\rightarrow}\mathbb{R}^1
-
one ''hidden layer"
-
one "node"
-
"activation" phi
-
"threshold" theta
ϕ
\phi
Definition of a feedforward neural network
Definition of a feedforward neural network
f(x1,x2,⋯,xn)=i=1∑2Wiϕi(j=1∑nwi,jxi+θi)
f(x_1,x_2,\cdots,x_n) = \sum\limits_{i=1}^{2}W_i\phi_i(\sum\limits_{j=1}^n w_{i,j} x_i+\theta_i)
w1,1
w_{1,1}
w1,2
w_{1,2}
w1,n
w_{1,n}
x1
x_1
x2
x_2
xn
x_n
Rn→fR1
\mathbb{R}^n \stackrel{f}{\rightarrow}\mathbb{R}^1
-
one ''hidden layer"
-
two "nodes"
W1
W_1
W2
W_2
w2,1
w_{2,1}
w2,2
w_{2,2}
w2,n
w_{2,n}
Definition of a feedforward neural network
(vector notation)
f(x)=WTϕ(wTx+θ)+η
f(\vec{x}) = \vec{W}^T\phi(\vec{w}^T\vec{x}+\vec{\theta})+\eta
x
\vec{x}
Rn→fR1
\mathbb{R}^n \stackrel{f}{\rightarrow}\mathbb{R}^1
W
\vec{W}
w
\vec{w}

Google's TensorFlow and ML workbench
-
Google Cloud Platform Datalab (https://cloud.google.com/datalab/)
-
TensorFlow and high-level framework (ML Workbench)
import google.datalab.contrib.mlworkbench.commands
Thank you!
Copy of Copy of Introduction to neural networks
By Jeremy Jacobson
Copy of Copy of Introduction to neural networks
- 98