Deep learning mathematics

Institute for quantitative theory and methods (QTM)

Jeremy Jacobson

Lecturer

Image by Chris Benson

Deep neural networks (DNNs)

95% of neural network inference workload in Google datacenters

https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

Table 1 appears on next slide

Neural networks

 

  1. Mathematical intuition

  2. Definition

Kolmogorov

Every continuous function of several variables defined on the unit cube can be represented as a superposition of continuous functions of one variable and the operation of addition (1957).

f(x_1,x_2, \ldots, x_n) = \sum\limits_{i=1}^{2n+1}f_i(\sum\limits_{j=1}^{n}\phi_{i,j}(x_j))
f_1
f_i
f_{2n+1}
f(x_1,x_2, \ldots, x_n) = \sum\limits_{i=1}^{2n+1}f_i(\sum\limits_{j=1}^{n}\phi_{i,j}(x_j))
x_1
x_2
x_n
\phi_{1,n}
\phi_{2n+1,n}
\phi_{2n+1,1}
\phi_{1,1}
\phi_{1,2}
\phi_{2n+1,2}
f
f(x_1,x_2,\cdots,x_n) = \phi(\sum\limits_{i=1}^n w_i x_i+\theta)
w_1
w_2
w_n
x_1
x_2
x_n
\mathbb{R}^n \stackrel{f}{\rightarrow}\mathbb{R}^1
  • one ''hidden layer"

  • one "node"

  • "activation" phi

  • "threshold" theta

\phi

Definition of a feedforward neural network 

Definition of a feedforward neural network 

f(x_1,x_2,\cdots,x_n) = \sum\limits_{i=1}^{2}W_i\phi_i(\sum\limits_{j=1}^n w_{i,j} x_i+\theta_i)
w_{1,1}
w_{1,2}
w_{1,n}
x_1
x_2
x_n
\mathbb{R}^n \stackrel{f}{\rightarrow}\mathbb{R}^1
  • one ''hidden layer"

  • two "nodes"

W_1
W_2
w_{2,1}
w_{2,2}
w_{2,n}

Definition of a feedforward neural network 

(vector notation)

f(\vec{x}) = \vec{W}^T\phi(\vec{w}^T\vec{x}+\vec{\theta})+\eta
\vec{x}
\mathbb{R}^n \stackrel{f}{\rightarrow}\mathbb{R}^1
\vec{W}
\vec{w}

Neural network approach to counting real roots of polynomial systems

Mourrain, Pavlidis, Tasoulis,Vrahatis:

 univariate polynomials of degree 2

ax^2+bx+c=0
x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}

Reproducing results using Google's TensorFlow and ML workbench

  • Google Cloud Platform Datalab (https://cloud.google.com/datalab/)

  • TensorFlow

  • and high-level framework 

import google.datalab.contrib.mlworkbench.commands

Our results:

Class Classification Accuracy 
Class 1: Zero real roots 99.17 %
Class 2: Two real roots 100%

Thank you!

Deep learning mathematics

By Jeremy Jacobson

Deep learning mathematics

  • 286