SISL and Fast Spline Evaluation

J. Horacsek

Nov 17th, 2017

Motivation

For scalar vis, we often care about evaluating functions of the form

f(x) = \displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ \varphi(x-n)

And we want to do this quickly; this is required for interactive visualization of datasets 

Sampling Lattices

Cartesian Lattice

Body Centered Cubic Lattice

\displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ \varphi(x-n)

L controls the point distribution

Box Splines

Multivariate extension to B-splines

  • Compact
  • Smooth
  • Piecewise polynomials
\Xi = \begin{bmatrix} | & | & \ & | \\ \xi_1 & \xi_2 & ... & \xi_n \\ | & | & \ & | \end{bmatrix}

Start with a direction matrix

\xi_i \in \mathbb{R}^s

Box Splines

Convolutional, recursive definition

M_\Xi(x) = \displaystyle\int_0^1M_{\Xi\backslash\xi}(x - t\xi) dt \text{ \ with \ } M_{[ \ ]}(x) := \delta(x)

In one dimension, this looks sort of like

Box Splines

\Xi = \begin{bmatrix} 1 & 0 & 1 \\ 0& 1 & 1 \end{bmatrix}

Box Splines

\Xi = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0& 1 & 1 & 1 \end{bmatrix}

Box Splines

Multivariate extension to B-splines

  • Compact
  • Smooth
  • Piecewise polynomials

Box Splines

We have an explicit form of evaluation

M_\Xi(x) = \displaystyle\sum_{(\gamma,p)\in S_\Xi} \sum_{(\lambda, \alpha) \in P_{n-s}} \gamma\lambda |\det\Xi_\alpha|{{[\![ (\Xi_\alpha^{-1}x) - p ]\!]}_{+}}^{\mu_\alpha - 1}.

(this is just a piecewise polynomial....)

But we still have the problem of evaluating

f(x) = \displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ \varphi(x-n) = \displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ M_\Xi(x-n)

Generic Evaluation

f(x) = \displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ \varphi(x-n)

How do we write generic code for:

f(x) = \displaystyle\sum_{n\in\overline{supp(\varphi(\cdot - x)} \cap \mathbb{Z}^3 }c_n \ \varphi(x-n) \chi_{L\mathbb{Z}^3}(n)

Two C++ classes: 

Lattice

Basis Function

class Lattice {
    Lattice(int rx, int ry, int rz);
    
    is_lattice_site(int rx, int ry, int rz);
    get_nearest_site(float x, float y, float z);

    // Get and set values
    operator(int rx, int ry, int rz);

    // Additional support methods
    // and iterators
};
class BasisFunction {
    // no constructor, 
     
    // integer support from the origin
    get_support_size();

    //
    phi(float rx, float ry, float rz);

    // Additional support methods for derivatives
};
\chi_{L\mathbb{Z}^3}(x) = \begin{cases} 1 & \text{ if } x \in L\mathbb{Z}^s\\ 0 & \text{ otherwise } \end{cases}

Generic Evaluation

How do we write generic code for:

f(x) = \displaystyle\sum_{n\in\overline{supp(\varphi(\cdot - x))} \cap \mathbb{Z}^3 }c_n \ \varphi(x-n) \chi_{L\mathbb{Z}^3}(n)

Lattice

Basis Function

class Lattice {
    Lattice(int rx, int ry, int rz);
    
    is_lattice_site(int rx, int ry, int rz);
    get_nearest_site(float x, float y, float z);

    // Get and set values
    operator(int rx, int ry, int rz);

    // Additional support methods
    // and iterators
};
class BasisFunction {
    // no constructor, 
     
    // integer support from the origin
    static get_support_size();

    //
    static phi(float rx, float ry, float rz);

    // Additional support methods for derivatives
};

As long as we can compute values of \(\varphi\), and we know the support of \(\varphi\), we can evaluate the convolution sum

Generic Evaluation

How do we write generic code for:

f(x) = \displaystyle\sum_{n\in\overline{supp(\varphi(\cdot - x))} \cap \mathbb{Z}^3 }c_n \ \varphi(x-n) \chi_{L\mathbb{Z}^3}(n)

Convolution sum

template<int N, class L, class BF>
static double convolution_sum(const vector &p, const L *lattice) {
    auto sites = BF::template get_integer_support<N>();
    lattice_site c = lattice->get_nearest_site(p);
    lattice_site extent = lattice->get_dimensions();

    double value = 0;

    for(lattice_site s : sites) {
        if(!lattice->is_lattice_site(c+s)) continue;

        double w = BF::template phi<N>(p - (c+s).cast<double>());
        if(w == 0.) continue;
        value += w * (double)(*lattice)(c + s);
    }
    return value;
}

This is slightly different from the above sum, but the concept is roughly the same

Generic Evaluation

Bringing this together in an example

using namespace sisl;
using namespace sisl::utility;

// Create a CC lattice
cartesian_cubic<float> data(7,7,7);

// Give it some data
data(2,1,3) = 1;
data(2,2,3) = 1;

data(4,1,3) = 1;
data(4,2,3) = 1;

data(1,4,3) = 1;
data(2,5,3) = 1;
data(3,5,3) = 1;
data(4,5,3) = 1;
data(5,4,3) = 1;

// Combine it with a basis function
si_function<cartesian_cubic<float>, // specify the lattice (and its data type)
            tp_linear,              // specify the basis function
            3>                      // specify dimension 
            f_data(&data);          // specify name and input lattice

// Most of the time we need to normalize the volume
// we can scale the input with the following code
vector scale(3);
// Scaling is in the form f(s*x, s*y, s*z), so we specify 7,7,7 as scale
scale << 7.,7.,7.;
f_data.set_scale(scale);

// To evaluate
f->eval(0.2, 0.1, 0.1);

Generic Evaluation

Built in Marching cubes (isovalue = 0.25)

Is this fast?

f(x) = \displaystyle\sum_{n\in\overline{supp(\phi(\cdot - x)} \cap \mathbb{Z}^3 }c_n \ \varphi(x-n) \chi_{L\mathbb{Z}^3}(n)

Sorta maybe fast... We can do better though

  • Must evaluate \(\varphi\) a total of \(\overline{supp(\varphi(\cdot ))}\) times
  • Particularly bad if \(\varphi\) is expensive to calculate
  • For box splines, \(f(x)\) is locally a polynomial of some degree \(d\). We are doing multiple evaluations of \(\varphi\), then adding those values, which is also a polynomial of degree \(d\) locally. 

Is this fast?

    template<class T>
    inline double __fast_cubic_tp_linear__(const vector &p, const cartesian_cubic<T> *lattice) {
        //vector sx = lattice->get_dimensions().template cast<double>();
        vector vox = p.array();// * sx.array();

        int vx = (int)floor(vox[0]),
            vy = (int)floor(vox[1]),
            vz = (int)floor(vox[2]);

        double x = vox[0] - (double)vx,
               y = vox[1] - (double)vy,
               z = vox[2] - (double)vz;

        double v000 = (*lattice)(vx, vy, vz);
        double v100 = (*lattice)(vx + 1, vy, vz);
        double v010 = (*lattice)(vx, vy + 1, vz);
        double v110 = (*lattice)(vx + 1, vy + 1, vz);
        double v001 = (*lattice)(vx, vy, vz + 1);
        double v101 = (*lattice)(vx + 1, vy, vz + 1);
        double v011 = (*lattice)(vx, vy + 1, vz + 1);
        double v111 = (*lattice)(vx + 1, vy + 1, vz + 1);

        return (1.-x)*(1.-y)*(1.-z)*v000 +
               x*(1.-y)*(1.-z)*v100 +
               (1.-x)*y*(1.-z)*v010 +
               x*y*(1.-z)*v110 +
               (1.-x)*(1.-y)*z*v001 +
               x*(1.-y)*z*v101 +
               (1.-x)*y*z*v011 +
               x*y*z*v111;
    }

    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, unsigned char);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, char);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, unsigned short);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, short);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, unsigned int);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, int);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, float);
    FAST_BASIS_SPECIALIZATION(tp_linear, cartesian_cubic, __fast_cubic_tp_linear__, 3, double);

Is this fast?

#ifndef NO_FAST_BASES //! if NO_FAST_BASES is defined, all fast implementations of basis functions will be disabled 
#define FAST_BASIS_SPECIALIZATION(basis, lattice, function, dim, type) \
template<> \
inline double basis::convolution_sum<dim, lattice<type>, basis>(const vector &p, const lattice<type> *l) { \
    return function<type>(p,l); \
}
#else
#define FAST_BASIS_SPECIALIZATION(basis, lattice, function, dim, type)
#endif

Is this fast?

template<int N, class L, class BF>
static double convolution_sum(const vector &p, const L *lattice) {
    auto sites = BF::template get_integer_support<N>();
    lattice_site c = lattice->get_nearest_site(p);
    lattice_site extent = lattice->get_dimensions();

    double value = 0;

    for(lattice_site s : sites) {
        if(!lattice->is_lattice_site(c+s)) continue;

        double w = BF::template phi<N>(p - (c+s).cast<double>());
        if(w == 0.) continue;
        value += w * (double)(*lattice)(c + s);
    }
    return value;
}

Generic Evaluation

Built in marching cubes (isovalue = 0.25, fine step size)

Normal Compile -DNO_FAST_BASES
~12s ~405s

Only running on one thread, same machine per run.

This is a BIG difference!

Aside

It's nice to be able to mix and match basis functions and lattices...

This generality comes at a price!

It's infeasible to derive fast code for every basis + lattice. The space of these is very large (infinite)

Compromise! For useful lattice+basis combinations, we can derive faster evaluation schemes, but leave in the generic evaluation schemes for experimentation

Fast Evaluation

Let's think about 

f(x) = \displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ \varphi(x-n)

What would make this fast?

  • Finite Sum (compact basis functions)
  • Small amount of terms
  • Geometry of basis function
  • Coset Structure

Fast Evaluation

f(x) = \displaystyle\sum_{n\in L\mathbb{Z}^3}c_n \ \varphi(x-n)
=\displaystyle\sum^k_{i=1}\sum_{n\in G\mathbb{Z}^3}c_n \ \varphi\left(x-n-l_i\right)
=\displaystyle\sum^k_{i=1}\sum_{n\in C_i(x)} c_n \ \varphi\left(x-n\right)

Coset structure is a design parameter!

Define the set \(C_i(x)=(G\mathbb{Z}^3+l_i)\cap \overline{supp(\varphi(\cdot-x))}\)

Where \(G\) is the generating matrix for the coset decomposition.

Fast Evaluation

\displaystyle\sum_{n\in C_0(x)} c_n \ \varphi\left(x-n\right)

This allows us to treat the convolution as a sum of convolutions on different (shifted) grids, this is good for GPU implementations. 

Now let's focus on how the geometry of the basis function affects reconstruction speed

  • Take advantage of locality in texture memory
  • Leverage existing tensor product hardware implementations in GPU 

Fast Evaluation

Let's consider regions of space where the set

 

is constant. This depends on both the structure of the support of the basis function and chosen coset structure.

C_0(x)

A few examples...

Fast Evaluation

Tensor Product

Even

Odd

\Xi = \begin{bmatrix} L & ... & L \end{bmatrix}
L = \begin{bmatrix} 1 & 0 \\ 0& 1 \end{bmatrix}

Fast Evaluation

Courant Element

\Xi = \begin{bmatrix} 1 & 0 & 1 \\ 0& 1 & 1 \end{bmatrix}
L = \begin{bmatrix} 1 & 0 \\ 0& 1 \end{bmatrix}

Fast Evaluation

ZP Element

\Xi = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0& 1 & 1 & 1 \end{bmatrix}
L = \begin{bmatrix} 1 & 0 \\ 0& 1 \end{bmatrix}

Fast Evaluation

Quincunx Lattice Example

L = \begin{bmatrix} 1 & -1 \\ 1& 1 \end{bmatrix}

Fast Evaluation

Quincunx TP Element

\Xi = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0& 2 & 0 & -2 \end{bmatrix}
L = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}

1 coset

Fast Evaluation

Quincunx TP Element

\Xi = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0& 2 & 0 & -2 \end{bmatrix}
L = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}

2 cosets

G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
l_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
l_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

Box Splines

\Xi = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0& 1 & 1 & 1 \end{bmatrix}

Fast Evaluation

Representative sub-regions

\Xi = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0& 1 & 1 & -1 \end{bmatrix}
L = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

Region of evaluation, \(R\).

\(\rho(x)\) is this shift

Fast Evaluation

Sub-regions

\(S_1\)

\(S_2\)

\(S_3\)

\(S_4\)

Fast Evaluation

So assume \(x\in R\). For each sub-region \(j\) we define \(\psi_j\) with

\displaystyle\sum_{n\in C_0(x)} c_n \ \varphi\left(x-n\right)

For box splines, we distribute the polynomial pieces into their corresponding sub-regions, i.e. \(\psi_i\). we can then spend time simplifying the polynomial \(\psi_i\)

= \Psi(x)
\Psi(x) := \begin{cases} \psi_1(x) & x \in S_1 \\ \ & \vdots\\ \psi_M(x) & x \in S_M \end{cases}

so that

Fast Evaluation

\(c_{0,0}\)

\(c_{1,0}\)

\(c_{1,1}\)

\(c_{0,1}\)

\(c_{-1,1}\)

\(c_{-1,0}\)

\(c_{-1,-1}\)

\(c_{0,-1}\)

\(c_{2,-1}\)

Fast Evaluation

\(c_{0,0}\)

\(c_{1,0}\)

\(c_{1,1}\)

\(c_{0,1}\)

\(c_{-1,1}\)

\(c_{-1,0}\)

\(c_{-1,-1}\)

\(c_{0,-1}\)

\(c_{2,-1}\)

\(C_0(R_1)\)

Fast Evaluation

\(c_{0,0}\)

\(c_{1,0}\)

\(c_{1,1}\)

\(c_{0,1}\)

\(c_{-1,1}\)

\(c_{-1,0}\)

\(c_{-1,-1}\)

\(c_{0,-1}\)

\(c_{2,-1}\)

\(C_0(R_2)\)

Fast Evaluation

\(c_{0,0}\)

\(c_{1,0}\)

\(c_{1,1}\)

\(c_{0,1}\)

\(c_{-1,1}\)

\(c_{-1,0}\)

\(c_{-1,-1}\)

\(c_{0,-1}\)

\(c_{2,-1}\)

\(C_0(R_3)\)

Fast Evaluation

\(c_{0,0}\)

\(c_{1,0}\)

\(c_{1,1}\)

\(c_{0,1}\)

\(c_{-1,1}\)

\(c_{-1,0}\)

\(c_{-1,-1}\)

\(c_{0,-1}\)

\(c_{2,-1}\)

\(C_0(R_4)\)

Fast Evaluation

Assume \(x\in R\). For fix some \(j\) we define \(\psi_j\) with

\psi_j(x) = \displaystyle\sum_{n\in C_0(S_j)} c_n \ \varphi\left(x-n\right)

We know that \(\varphi\) is a polynomial for all points \(x\in S_j\), so we can write it as

\psi_j(x) = \displaystyle\sum_{n\in C_0(S_j)} c_n \ P_n(x)

For some polynomial \(P_n(x)\)

Fast Evaluation

For the last example

\psi_1(x) = \displaystyle\sum_{n\in C_0(S_1)} c_n \ \varphi\left(x-n\right)

$$\psi_1=c_{-1,1}\varphi\left(x-(-1,1)\right) + c_{1,1} \varphi\left(x-(-1,1)\right)$$ $$ + c_{-1,0} \varphi\left(x-(-1,0)\right) + c_{1,0} \varphi\left(x-(1,0)\right) $$ $$ + c_{0,1} \varphi\left(x-(0,1)\right) + c_{0,0} \varphi\left(x-(0,0)\right)$$ $$ +c_{0,-1} \varphi\left(x-(0,-1)\right)$$

$$1/4(c_{-1,-1} + c_{-1,0} - 2c_{0,-1} - 2c_{0,0} + c_{1,-1} + c_{1,0})x_0^2 $$ $$+ 1/4(c_{-1,-1} - c_{-1,0} - 2c_{0,0} + 2c_{0,1} + c_{1,-1} - c_{1,0})x_1^2 $$ $$- 1/2(c_{-1,0} - c_{1,0})x_0 $$ $$+ 1/2((c_{-1,-1} - c_{-1,0} - c_{1,-1} + c_{1,0})x_0 - c_{0,-1} + c_{0,1})x_1 + 1/8c_{-1,0} $$ $$ + 1/8c_{0,-1} + 1/2c_{0,0} + 1/8c_{0,1} + 1/8c_{1,0})$$

$$\psi_1=$$

Fast Evaluation

We can explicitly calculate each region 

$$\psi_3(x)=1/4(c_{-1,-1} + c_{-1,0} - 2c_{0,-1} - 2c_{0,0} + c_{1,-1} + c_{1,0})x_0^2 + 1/4(c_{-1,-1} - c_{-1,0} - 2c_{0,0} + 2c_{0,1} $$ $$+ c_{1,-1} - c_{1,0})x_1^2 - 1/2(c_{-1,0} - c_{1,0})x_0 + 1/2((c_{-1,-1} - c_{-1,0} - c_{1,-1} + c_{1,0})x_0 - c_{0,-1} + c_{0,1})x_1 $$ $$+ 1/8c_{-1,0}+ 1/8c_{0,-1} + 1/2c_{0,0} + 1/8c_{0,1} + 1/8c_{1,0}'$$

$$\psi_2(x)=1/4(2c_{-1,0} - c_{0,-1} - 2c_{0,0} - c_{0,1} + c_{1,-1} + c_{1,1})x_0^2 + 1/4(c_{0,-1} - 2c_{0,0} + c_{0,1} + c_{1,-1}$$ $$ - 2c_{1,0} + c_{1,1})x_1^2 - 1/2(c_{-1,0} - c_{1,0})x_0 + 1/2((c_{0,-1} - c_{0,1} - c_{1,-1} + c_{1,1})x_0 - c_{0,-1} + c_{0,1})x_1$$ $$ + 1/8c_{-1,0}+ 1/8c_{0,-1} + 1/2c_{0,0} + 1/8c_{0,1} + 1/8c_{1,0}$$

$$\psi_1(x)=1/4(c_{-1,0} + c_{-1,1} - 2c_{0,0} - 2c_{0,1} + c_{1,0} + c_{1,1})x_0^2 - 1/4(c_{-1,0} - c_{-1,1} - 2c_{0,-1} $$ $$+ 2c_{0,0} + c_{1,0} - c_{1,1})x_1^2 - 1/2(c_{-1,0} - c_{1,0})x_0 + 1/2((c_{-1,0} - c_{-1,1} - c_{1,0} + c_{1,1})x_0 $$ $$- c_{0,-1} + c_{0,1})x_1 + 1/8c_{-1,0} + 1/8c_{0,-1} + 1/2c_{0,0} + 1/8c_{0,1} + 1/8c_{1,0}$$

$$\psi_4(x)=1/4(c_{-1,-1} + c_{-1,1} - c_{0,-1} - 2c_{0,0} - c_{0,1} + 2c_{1,0})x_0^2 + 1/4(c_{-1,-1} - 2c_{-1,0} + c_{-1,1} + c_{0,-1} $$ $$- 2c_{0,0} + c_{0,1})x_1^2 - 1/2(c_{-1,0} - c_{1,0})x_0 + 1/2((c_{-1,-1} - c_{-1,1} - c_{0,-1} + c_{0,1})x_0 - c_{0,-1} + c_{0,1})x_1 $$ $$+ 1/8c_{-1,0} + 1/8c_{0,-1} + 1/2c_{0,0} + 1/8c_{0,1} + 1/8c_{1,0}$$

Fast Evaluation

Now what? We have a list of polynomials but there are still branches necessary, i.e.

\Psi(x) := \begin{cases} \psi_1(x) & x \in S_1 \\ \ & \vdots\\ \psi_M(x) & x \in S_M \end{cases}

This great on modern CPU architectures, but is not so good on GPU architectures. Multiple cases = branches.

If we fail, we'll drop back to branch predication

We could try branch predication, but this is quite wasteful. Let's try to be more clever.

Fast Evaluation

For the last example

 $$=1/4(k_1 + k_2 - 2k_4 - 2k_5 + k_7 + k_8)x_0^2 $$ $$- 1/4(k_1 - k_2 - 2k_3 + 2k_4 + k_7 - k_8)x_1^2 $$ $$- 1/2(k_1 - k_7)x_0 + 1/2((k_1 - k_2 - k_7 + k_8)x_0 - k_3 + k_5)x_1$$ $$ + 1/8k_1 + 1/8k_3 + 1/2k_4 + 1/8k_5 + 1/8k_7$$

\(\psi^*(x_0,x_1, k_1, k_2, k_3, k_4,k_5,k_6,k_7)\)

Then

\psi_1(x) = \psi^*(x_0 , x_1 , c_{-1, 0}, c_{0, -1}, c_{0, 0}, c_{0, 1}, c_{1, -1}, c_{1, 0}, c_{1, 1})
\psi_2(x) = \psi^*(x_1 , x_0 , c_{0, -1}, c_{1, -1}, c_{-1, 0}, c_{0, 0}, c_{1, 0}, c_{0, 1}, c_{1, 1})
\psi_3(x) = \psi^*(-x_0 , -x_1 , c_{1, 1}, c_{1, 0}, c_{1, -1}, c_{0, 1}, c_{0, 0}, c_{0, -1}, c_{-1, 0})
\psi_4(x) = \psi^*(-x_1 , -x_0 , c_{1, 1}, c_{0, 1}, c_{1, 0}, c_{0, 0}, c_{-1, 0}, c_{1, -1}, c_{0, -1})

We only need to know one polynomial!

Fast Evaluation

There is no guarantee that we'll only have one \(\psi^*\), so we may have a set of such functions. We want to find a minimal set of \(\{\psi^*_j\}\), that contains the set \(\{\psi_1 \cdots \psi_M\}\) under rotations and translations of the elements of  \(\{\psi_j^*\}\)

Rotations and translations can be stored in a lookup table for GPU evaluation.

Minimize the amount of elements \(\{\psi_j^*\}\) has, since having multiple leads to either branching or additional wasted work on the GPU

Fast Evaluation

How do we evaluate the polynomials?

Recall Horner's method

f(x) = \displaystyle\sum^n_{k=1} a_k x^k = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n
f(x) = \displaystyle\sum^n_{k=1} a_k x^k = a_0 x(a_1 + ... + x(a_{n-1} + a_nx))

There is no such unique factorization with more than one variable

Fast Evaluation

That's fine, Horner factorization still exist, let's just brute force search for them

f({x}) = c_1x_1x_2x_3x_4 + c_2x_2x_3x_4x_5 + c_3x_1x_3x_4x_5 + c_4x_1x_2x_4x_5 + c_5x_1x_2x_3x_5 + c_6
f({x}) = x_3x_4(x_2(c_1x_1+c_2x_5) + c_3x_1x_5) + x_1x_2x_5(c_4x_4 + c_5x_3) + c_6

12 muliplications

Fast Evaluation

Efficiently compute the monomials

We get these for free on the GPU, these can be evaluated while waiting for texture reads

x_1
x_2
x_3
x_4
x_5
x_1x_2
x_1x_5
x_3x_4
x_1x_2x_5

4 multiplications - leaves 8 in previous form

Fast Evaluation

General outline 

f = 0
for each coset j:
    n = rho(x) // Linear transform
    x = x - n

    sub_reg_idx = planeLookup(x) 
    C = coeffPermutationLookup[sub_reg_idx]
    R = localTransformLookup[sub_reg_idx]
    t = localTranslateLookup[sub_reg_idx]

    coeffs = accessCoefficients(sub_reg_idx, n)
    
    f += Psi(j, R*x + t, coeffs); // use effecient monom eval
return f;

Fast Evaluation

static __forceinline__ __device__ float convolution_sum(const body_centered_cubic *l, const float &u, const float &v, const float &w,
	    unsigned char *region_lut_s,
	    unsigned char *ls_lut_s,
	    unsigned char *sr_lut_s,
	    char *sites_s,
	    unsigned char *vperm_s,
	    float* shared_bank) {
	float x_0, x_1, x_2;
        int vx, vy, vz;

	int thread_id = (threadIdx.y * blockDim.x) + threadIdx.x;
	float *s = &shared_bank[thread_id*4];

        // Lookups...

        return  0.5*((-r3 + r4)*v_0 +
        	    (r1 - r2)*v_1 +
        	    (r1 + r2 - r3 - r4)*v_2 +
        	    (2.)*r3);
}

Experiments

CPU Performance, GPU Performance, Volumetric Rendering

Results

Results

No hardware acceleration*

Experiments

Results

Volume Rendering

Results

Results

Conclusion 

This allows us to build a general interpolation library, on regular grids, that is well suited to experimentation and speed

Lots of stuff I haven't talked about

  • Filtering
  • Fourier Transforms
  • Compression

Fast Splines

By Joshua Horacsek

Fast Splines

  • 1,255