Double-Bracket Algorithmic Cooling
(
DBAC)

Kay Giang - NTU Singapore

Ingredients for DBAC

  1. Quantum Dynamic Programming
  2. Algorithmic Cooling
  3. Quantum Imaginary Time Evolution

First ingredient:

Quantum Dynamic Programming (QDP)

  • Usual quantum computing is static: To change operation \(\to\) have to change the circuit
  • Dynamic quantum computing: To change operation, only need to change instruction qubit

Normal way we do quantum computing: Static

Dynamic Quantum Computing

Kjaergaard et al., arxiv:2001.08838

Unfolding quantum recurions

Consider Grover reflector: \(G=id - 2\ket\psi\bra\psi\) 

\(Q,R \in U(D)\), initial state \(\ket{\psi_0}\), \(\ket{\psi_{k+1}} = QG^{(\psi_k)}R\ket{\psi_k}\)

\begin{align*} G^{(\psi_1)} &=\mathbb{1} - 2\ket{\psi_1}\bra{\psi_1}\\ &=\mathbb{1} - 2U(\psi_0) \ket{\psi_0}\bra{\psi_0}U(\psi_0)^\dagger\\ &=U(\psi_0)(\mathbb{1}-2\ket{\psi_0}\bra{\psi_0})U(\psi_0)^\dagger\\ &= U(\psi_0) G^{(\psi_0)}U(\psi_0)^\dagger \end{align*}
\begin{align*} U(\psi_0) &= QG^{(\psi_0)}R\\ \ket{\psi_1} &= QG^{(\psi_0)}R\ket{\psi_0} \end{align*}

However, it's more complicated to get \(\ket{\psi_2}\). To do this, we need to get \(U(\psi_1)\). Ordinary idea:

Reflection of \(\psi_1\) is the rotated reflection of \(\psi_0\)

To get \(\ket{\psi_1}\) is simple:

\begin{align*} \ket{\psi_2} &= QG^{(\psi_1)}R\ket{\psi_1}\\ &={Q(QG^{(\psi_0)}R)G^{(\psi_0)}(QG^{(\psi_0)}R)^\dagger R QG^{(\psi_0)}R\ket{\psi_0}} \end{align*}

Why use QDP?

  • Unfolding the recursion make the depth grow exponentially
  • Using placeholder memory is not straightforward with quantum computing
  • Quantum Dynamic Programming (QDP), a framework that uses copies of the recursive state to implement the recursion step unitary

Why use QDP?

  • QDP yields exponential reduction in circuit depth than when unfolding
  • QDP is dynamic because the instruction state is revealed only on runtime
  • Kimmel et al. (arxiv 1608.00281) shows that using quantum information as source code is basis of a universal model for quantum computation

Quantum Dynamic Programming

  • QDP speed up recursion of the form (single memory call):
    \[ U^{(\mathcal{N},\rho)} =  V_2e^{i\mathcal{N}(\rho)}V_1\] where \(\mathcal{N}\) is any Hermitian-preserving map
  • Memory call: Idealized transformation we want to make. It asks for memory (instruction state \(\rho\)).
  • General case:

     
  • Problem: We can't implement this naturally in qunatum mechanics

Quantum Dynamic Programming

  • Solution: QDP approximate this memory call unitary:

     
  • QDP does this by using memory usage query:


    where \(N\) is the operator of the memory usage query, the partial transpose of the Choi matrix corresponding to \(\mathcal{N}\)
    • Consume (trace out) an instruction state
  • Repeat this procedure M times, we obtain
\mathcal{E}_s^{(N,\rho)}(\sigma) = Tr_\rho [e^{-iNs} (\rho\otimes\sigma) e^{iNs}]
E^{(\mathcal{N},\rho)}(\sigma) = e^{i\mathcal{N}(\rho)} \sigma e^{-i\mathcal{N}(\rho)}
\mathcal{E}^{(\mathcal{N},\rho,M)}_{QDP} \coloneqq (\mathcal{E}^{(\mathcal{N},\rho)}_{1/M})^M = E^{(\mathcal{N},\rho)} + O(1/M)

Second ingrdient:
Algorithmic Cooling (AC)

  • Set-up: \(n\) qubits identically prepared
  • Objective: minimize 1 particular qubit entropy
  • Method: apply a global unitary operation iteratively
  • AC acts on mixed state with initial polarisation
    \[\rho = \begin{pmatrix}p & 0 \\0 & 1 - p\end{pmatrix}\]
  • AC works by redistributing \(|0\rangle\) and \(|1\rangle\) population

Extreme case: Pure state

Question: What if the state is pure (but not in computational basis)?

\(\to\) AC suppress coherence at expense of adding entropy

\(\to\) Cooling to a pure ground state is then not possible

 

Single qubit rotation can rotate a pure qubit to perfect ground state \(|\psi\rangle\to|0\rangle\)

\(\to\) Can we handle coherence via single qubit rotation?

\(\to\) Yes, with double-bracket algorithmic cooling

Third ingredient:

Quantum imaginary time evolution (QITE)

|\Psi(\tau)\rangle = \frac{e^{-\tau \hat{H}}}{\|e^{-\tau \hat{H}}|\Psi(0)\rangle\|} |\Psi(0)\rangle

\(\Psi(0)\): Initial state

\(\Psi(\tau)\): State at time \(\tau\)

\(\hat H\): Diagonalised Hamiltonian

Cool the initial state \(\Psi(0)\) with respect to the Hamiltonian \(\hat H\)

DB-QITE formula

|\Psi(\tau)\rangle = \frac{e^{-\tau \hat{H}}}{\|e^{-\tau \hat{H}}|\Psi(0)\rangle\|} |\Psi(0)\rangle

Gluza et al. (2412.04554) shows that QITE satisfy:

\begin{align*} \partial_\tau {|\Psi(\tau) \rangle} = [\Psi(\tau),\hat{H}] |\Psi(\tau) \rangle \end{align*}

Double-bracket

\frac{\partial \Psi(\tau)}{\partial \tau} = \big[ [\Psi(\tau),\hat H],\Psi(\tau)\big]

In terms of the density matrix \(\Psi(\tau)\):

Recursion step

\ket{\Psi(t)}\approx e^{t[\Psi(0),\hat H]}\ket{\Psi_0}

For short duration t:

\partial_\tau {|\Psi(\tau) \rangle} = [\Psi(\tau),\hat{H}] |\Psi(\tau) \rangle\

This motivates defining the recursion step:

\ket{\psi_{k+1}} = e^{t_k[\psi_k,\hat H]} \ket{\psi_k}

\(\ket{\psi_k}\): State at step \(k\) 

DB-QITE recursion formula

\boxed{\ket{\psi_{k+1}} \approx e^{i\sqrt{t_k}\hat H} e^{i\sqrt{t_k}\psi_k} e^{-i\sqrt{t_k}\hat H}\ket{\psi_k}}
e^{t[\psi,\hat H]}|\psi\rangle = e^{i\sqrt{t}\hat H}e^{i\sqrt{t}\psi} e^{-i\sqrt{t}\hat H} e^{-i\sqrt{t}\psi}|\psi\rangle + \mathcal O(t^{3/2})

Using the group commutator relation:

DB-QITE recursion formula:

Density matrix exponentiation (DME)

DB-QITE Performance

\boxed{\ket{\psi_{k+1}} \approx e^{i\sqrt{t_k}\hat H} e^{i\sqrt{t_k}\psi_k} e^{-i\sqrt{t_k}\hat H}\ket{\psi_k}}

If we have ideal DME

\(e^{i\sqrt{t_k}\psi_k}\)

Ingredients for DBAC

  1. Quantum Dynamic Programming (QDP)
  2. Algorithmic Cooling (AC)
  3. Quantum Imaginary Time Evolution (QITE)

Double-bracket Algorithmic Cooling (DBAC)

Set up of DBAC protocol

  • Set-up: \(n\) qubits identically prepared in a pure state \(|\psi\rangle\)
  • Objective: rotate 1 qubit to ground state \(|0\rangle\)
  • Method: Simulating imaginary time evolution by compiling a circuit

Compilation for resetting one qubit

\boxed{\ket{\psi_{k+1}} \approx e^{i\sqrt{t_k}\hat H} e^{i\sqrt{t_k}\psi_k} e^{-i\sqrt{t_k}\hat H}\ket{\psi_k}}

\(e^{i\sqrt{t_k}\psi_k}\): Density matrix exponentiation (DME)

Single qubit: \(\hat H = \hat Z\)

: \(\delta\)SWAP gate, applying \(e^{-i t \text{SWAP}}\). Compiled using Heisenberg interaction: \(e^{it(XX+YY+ZZ)}\)

DME Circuit

\boxed{\ket{\psi_{k+1}} \approx e^{i\sqrt{t_k}\hat H} e^{i\sqrt{t_k}\psi_k} e^{-i\sqrt{t_k}\hat H}\ket{\psi_k}}

DME Circuit

\(\delta\)SWAP compiled using Heisenberg interaction: \(e^{it(XX+YY+ZZ)}\)

DME Circuit

Reason for using ZZ interaction: The entangling operation in transmon qubit is Stark-induced ZZ by level excursions (siZZle)

DME experimental calibration

Energy reduction guarantee

E_\text{DBAC} = E_0-2\sin^2(t)(1-E_0^2)\Big((1-\cos(t)) E_0 - \cos(t)\Big)

Energy after 1 step:

Rotation on Bloch sphere

Example layout for 2 steps of DBAC with 3 DME iterations in each

Why use DBAC?

  • Naive method for resetting qubit via rotation: tomography
  • Central limit theorem: Statistical error e.g.  \(\langle X\rangle\) estimation scale as \(1/\sqrt{n}\)
  • DBAC uses less copies, because it is dynamic so we don't need to know the state precisely
  • DBAC is the first protocol experimentally tested, where the dynamic aspect has a clear physics utility
  • This is our first step towards building a quantum dynamic tool-kit

Summary

  • DBAC setting: \(n\) qubits initialised to the same pure state \(|\psi\rangle\)
  • DBAC simulates imaginary time evolution via a hardware native compilation to cool the coherence of one qubit to ground state \(|0\rangle\)
  • DBAC is part of a dynamic quantum tool-kit that offers exponential circuit depth reduction

Thank you for listening!

DBAC

By Khanh Uyen Giang