Optimizing

Gradient Descent

Kian Paimani

Zakarias Nordfäldt-Laws

June 2018

PERFORMANCE ENGINEERING

Recap: Gradient Descent

J(\theta) = \displaystyle\frac{1}{m}\sum_{t=1}^{m}(h_\theta(x^{(i)}) - y^{(i)})^2
J(θ)=1mt=1m(hθ(x(i))y(i))2J(\theta) = \displaystyle\frac{1}{m}\sum_{t=1}^{m}(h_\theta(x^{(i)}) - y^{(i)})^2
  • Final Algorithm: ADAM

Recap: Goals

  • Final Algorithm: ADAM
  • Reach the max Iteration/sec possible
    • Preserving the algorithm's validity
  • Parallelization + Optimization
    • CPU / GPU

Reference Implementation

for (i=1; i<iterations+1; i++){
    for(z=0; z<length; z+=batch_size) {

        update_gradient_batch(/* ... */); 
        
    	for (n = 0; n < dim; n++) {

            /* Eventually, update the weight */
            par->weights[n] += (alpha * m_hat) / (sqrt(r_hat) + eps);
        }
    }
}
void update_gradients_batch(){
    for(i=start; i<start+batch_size; i++){
        for (n=0; n<dim; n++) {
            /* 1. Make a prediction */
            /* 2. Compute error */
            /* 3. Calculate gradient using the cost function */
        }        
    }
}

Analytical Model

T_{exec} = Iter_{gradient} * Gradient\_Update \bigg[ (\#_{compute} * T_{compute}) + (\#_{mem} * T_{mem}) \bigg]
Texec=ItergradientGradient_Update[(#computeTcompute)+(#memTmem)]T_{exec} = Iter_{gradient} * Gradient\_Update \bigg[ (\#_{compute} * T_{compute}) + (\#_{mem} * T_{mem}) \bigg]
+ Iter_{weight} * Weight\_Update \bigg[ (\#_{compute} * T_{compute}) + (\#_{mem} * T_{mem}) \bigg]
+IterweightWeight_Update[(#computeTcompute)+(#memTmem)]+ Iter_{weight} * Weight\_Update \bigg[ (\#_{compute} * T_{compute}) + (\#_{mem} * T_{mem}) \bigg]
+ T_{overhead}
+Toverhead+ T_{overhead}
Iter_{gradient} = (iteration*\frac{data\_points}{batch\_size})
Itergradient=(iterationdata_pointsbatch_size)Iter_{gradient} = (iteration*\frac{data\_points}{batch\_size})
Iter_{weight} = (iteration*\frac{data\_points}{batch\_size}*dim)
Iterweight=(iterationdata_pointsbatch_sizedim)Iter_{weight} = (iteration*\frac{data\_points}{batch\_size}*dim)

Analytical Model

Iteration over all data
Setup
Finalize
Gradient\_Update
Gradient_UpdateGradient\_Update
Weight\_Update
Weight_UpdateWeight\_Update
Gradient\_Update
Gradient_UpdateGradient\_Update
Weight\_Update
Weight_UpdateWeight\_Update
Gradient\_Update
Gradient_UpdateGradient\_Update
Weight\_Update
Weight_UpdateWeight\_Update
Small Batch_size 
Large Batch_size 

CPU Based Parallelization

/* Initial Version - Generic Gradient Descent */
void gradient_descent(struct parameters *par);
void stochastic_gradient_descent(struct parameters *par);

/* ADAM Versions */
void adam(struct parameters *par);

void adam_seq_opt(struct parameters *par);

void adam_data_opt(struct parameters *par);

void adam_omp(struct parameters *par);

void adam_omp_simd(struct parameters *par);

CPU Based Parallelization

  • adam_seq_opt()
    • Loop unrolling, Function removal, Code motion etc.  

  • adam_data_opt()
    • cache optimization by better data access pattern.

CPU Based Parallelization

  • adam_omp()
    • 2 loops exposed

Iteration over all data
Setup
Finalize
Gradient\_Update
Gradient_UpdateGradient\_Update
Weight\_Update
Weight_UpdateWeight\_Update
Setup
Finalize
Gradient\_Update
Gradient_UpdateGradient\_Update
Weight\_Update
Weight_UpdateWeight\_Update

CPU Based Parallelization

  • adam_omp_simd()
for (i=1; i<iterations+1; i++){
    for(z=0; z<length; z+=MIN(batch_size, length-z)) {
        /* ... */

        #pragma omp parallel 
        {
            #pragma omp for
            for(n=z; n<MIN(z+batch_size, length); n++){
                for (a=0; a<dim-7; a+=8) { /* Vectorized Execution: Calculate Guess */ }
                error = par->Y[n] - guess;
                for (a=0; a<dim-7; a+=8){ /* Vectorized Execution: Update Gradients */ }
            }

            #pragma omp critical
            {
                /* Vectorized Execution: Reduction */
            }

            #pragma omp barrier

            #pragma omp for schedule(static) private(n, m_hat, r_hat)
            for (n=0; n<dim; n++) { /* Update weights */}
        }
    }
}

GPU Based Parallelization

/* GPU Versions */
void adam_cuda_global_mem(struct parameters *par);
 
void adam_cuda_global_mem_unrolled(struct parameters *par); 



void adam_cuda_shared_mem(struct parameters *par); 

void adam_cuda_shared_mem_stream(struct parameters *par); 

void adam_cuda_shared_mem_stream_pinned(struct parameters *par); 

void adam_cuda_shared_mem_stream_pinned_unrolled(struct parameters *par); 

GPU Based Parallelization

  • adam_cuda_global_mem​()
Setup
Finalize
Gradient\_Update
Gradient_UpdateGradient\_Update
Weight\_Update
Weight_UpdateWeight\_Update

Implies: 

Bigger batches => Better Speedup

GPU Based Parallelization

  • adam_cuda_shared_mem​()
  • Everything copied back to CPU.
  • Then reduced to final batch results

GPU Based Parallelization

  • Little is done on each thread.
  • Huge data transfers. 
  • GPU Performance analysis with counters: 
    • High level goal: computation / Mem ratio
      • Global Mem: 70 / 30

GPU Based Parallelization

  • adam_cuda_shared_mem​()
  • 2 Phase reduction
  • Partial reduction in GPU. minimal wrap up in CPU.
    • Less copy
    • More device utilization
    • Shared Mem: 64 / 36

GPU Based Parallelization

  • adam_cuda_shared_mem​_stream()
Copy\_To\_Device
Copy_To_DeviceCopy\_To\_Device
Copy\_To\_Device
Copy_To_DeviceCopy\_To\_Device
Copy\_To\_Device
Copy_To_DeviceCopy\_To\_Device
Copy\_To\_Device
Copy_To_DeviceCopy\_To\_Device
Copy\_To\_Device
Copy_To_DeviceCopy\_To\_Device

Ratio: 58 / 42

GPU Based Parallelization

  • adam_cuda_shared_mem​_stream_pinned_unrolled()
    • Host Memory: Pagable
    • Device Preferred Memory: Pinned
      • ​Reduces Copy time by a factor of 2~4
      • Needs redundant data on host
      • New Ratio: 52 / 48
    • Unroll the kernel execution
      • Not as much improvement as we expected...

GPU Based Parallelization

  • adam_cuda_shared_mem​_stream_pinned_unrolled()
  • Unrolling:
    • Less API overhead, not enough!
  • Streaming
    • Async copy: a much slower memory transfer
Copy\_To\_Device
Copy_To_DeviceCopy\_To\_Device

Results: Base

Results: Optimized

Modeling: Some Explanation

Modeling: Some Explanation

Modeling: Some Explanation

Memory

Bounded

Copy of uva-pe-1

By Kian Peymani

Copy of uva-pe-1

Midterm presentation of Performance Engineering course

  • 381