Parafermions at TRI interfaces?

Oroszlány László

Department of Physics of Complex Systems

Eötvös Loránd University, Budapest

Topological quantum computer architectures

many physical qubit = few logical qubit

degenerate subspace\(\Leftrightarrow\) topology of real space

A. Kitaev, Annals of Physics 321 2 (2006)

A. Kitaev Phys.-Usp. 44 131 (2001)

R. Lutchyn et al. Phys. Rev. Lett. 105, 077001 (2010)

Y.Oreg et al. Phys. Rev. Lett. 105, 177002 (2010)

V. Murik et al. Science 336, 1003 (2012)

topological protection

due to material properties

Majorana qubit

Kitaev "honeycomb" and "toric code"

Ising / Majorana / Topological superconductor

\displaystyle H =-J\sum_{p=1}^{L-1}\hat{\sigma}_{p}^{z}\hat{\sigma}_{p+1}^{z}-f\sum_{p=1}^{L}\hat{\sigma}_{p}^{x}
\displaystyle H =-J\sum_{p=1}^{L-1}\text{i}\hat{\gamma}_{2p}\hat{\gamma}_{2p+1}-f\sum_{p=1}^{L}\text{i}\hat{\gamma}_{2p-1}\hat{\gamma}_{2p}
\Updownarrow
\displaystyle H=-J\sum_{p=1}^{L-1}\left(\hat{a}_{p}^{\dagger}\hat{a}_{p+1}^{\dagger}+\hat{a}_{p+1}^{\dagger}\hat{a}_{p}+\text{h. c.}\right)-f\sum_{p=1}^{L}\left(-2\hat{a}_{p}^{\dagger}\hat{a}_{p}+\hat{1}\right)\\
\Updownarrow
\displaystyle\hat{\gamma}_{2p-1} =\hat{\sigma}_{p}^{z}\prod_{q < p}\hat{\sigma}_{q}^x \\ \hat{\gamma}_{2p} =\text{i}\hat{\sigma}_{p}^{x}\hat{\sigma}_{p}^{z}\prod_{q < p}\hat{\sigma}_{q}^x
\hat{\gamma}^2_k=\hat{1},\hat{\gamma}_k^\dagger=\hat{\gamma}_k
\hat{\gamma}_k\hat{\gamma}_l=-\hat{\gamma}_k\hat{\gamma}_l

Jordan-Wigner

 

 

 

Majorana-fermion

 

 

 

"standard" fermion

 

 

 

\hat{\gamma}_{2p-1} =\hat{a}_{p}^{\dagger}+\hat{a}_{p} \\ \hat{\gamma}_{2p} =\frac{\hat{a}_{p}^{\dagger}-\hat{a}_{p}}{\text{i}} \\ \hat{a}_{p}^{\dagger}\hat{a}_{q}+\hat{a}_{q}\hat{a}_{p}^{\dagger}=\delta_{pq}

TSC

 

 

p-wave

\(\hat{\gamma}_0\), \(\hat{\gamma}_{2L+1}\) absent!!

1D "transvers filed" Ising model

Kitaev model

Clock models and parafermions

\displaystyle H =-J\mathrm{e}^{\mathrm{i}\phi} \sum_{p=1}^{L-1}\omega\hat{\alpha}_{2p}^\dagger\hat{\alpha}_{2p+1} -f\mathrm{e}^{\mathrm{i}\theta}\sum_{p=1}^{L} \omega\hat{\alpha}_{2p-1}^\dagger\hat{\alpha}_{2p}
\Updownarrow
\displaystyle H =-J\mathrm{e}^{\mathrm{i}\phi}\sum_{p=1}^{L-1}\hat{\sigma}_{p}^\dagger\hat{\sigma}_{p+1}-f\mathrm{e}^{\mathrm{i}\theta}\sum_{p=1}^{L}\hat{\tau}_{p}+\mathrm{h. c.}

\(f=0\rightarrow\) parafermions at the edg,  \(\hat{\alpha}_1\) &   \(\hat{\alpha}_{2L}\), absent form the Hamiltonian!

The missing two parafermions encode an N-fold degenerate subspace!

\sigma=\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \Omega & 0\\ 0 & 0 & \Omega^{2} \end{array}\right)\\ \tau=\left(\begin{array}{ccc} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right)\\ \Omega=\text{e}^{\text{i}2\pi/N}=\omega^2

N=3 Clock model

 

 

 

 

 

Jordan-Wigner 

 

 

 

\displaystyle\hat{\alpha}_{2p-1} =\hat{\sigma}_{p}\prod_{q < p}\hat{\tau}_{q} \\ \hat{\alpha}_{2p} =-\omega\hat{\tau}_{p}\hat{\sigma}_{p}\prod_{q < p}\hat{\tau}_{q}\\

Parafermion

 

 

 

\hat{\alpha}^N_p=\hat{1},\hat{\alpha}_p^\dagger=\hat{\alpha}^{N-1}_p
\hat{\alpha}_p\hat{\alpha}_q=\Omega^{\mathrm{sign}(q-p)}\hat{\alpha}_q\hat{\alpha}_p

 Majorana-ferminok vs. parafermionok

  • Majorana-fermionok nem "igényelnek" kölcsönhatást (átlagtér közelítés elegendő).
  • Majorana-fermionok mozgatásának segítségével ugyan nem triviális kvanumkapuk megvalósíthatóak, de nincs univerzális kapukészlet, e.g. összefonó kaput nem lehet realizálni a topologikus védelem feladása nélkül.
  • Parafermionokhoz szükséges a kölcsönhatás (átlagtér közelítésen túl kell lépni)!
  • \(N>2\) parafermionok segítségével megvalósítható összefonó kapu, de ez még mindig nem elegendő univerzális kvantumszámításhoz.

A.Hutter, D. Loss Phys. Rev. B 93, 125105 (2016)

Possible experiment

F. Zhang, C. L. Kane, Phys. Rev. Lett., 113, 036401 (2014).
C. P. Orth et al. Phys. Rev. B, 91, 081406 (2015).

J. Alicea, P. Fendley  Annu. Rev. Condens. Matter Phys.  7,119 (2016.)

goal: microscopic model + DMRG

bosonised models

The model

  • two "disconected edges" (\(\zeta = {L,R} \)  )
  • explicit superconductivity
  • time reversal symmetry
\displaystyle H_k=\sum_{m\sigma}\left(\begin{array}{cc} c_{mL\sigma}^{\dagger} & c_{mR\sigma}^{\dagger}\end{array}\right)\left(\begin{array}{cc} -\mu & t\\ t & -\mu \end{array}\right)\left(\begin{array}{c} c_{mL\sigma}\\ c_{mR\sigma} \end{array}\right)\\ -\frac{t}{2}\sum_{m\sigma}\left[\left(\begin{array}{cc} c_{m+1L\sigma}^{\dagger} & c_{m+1R\sigma}^{\dagger}\end{array}\right)\left(\begin{array}{cc} \text{i}\sigma & 1\\ 1 & -\text{i}\sigma \end{array}\right)\left(\begin{array}{c} c_{mL\sigma}\\ c_{mR\sigma} \end{array}\right)+\text{h.c.}\right]

L

R

H_k\approx p\sigma_z\zeta_z
H=H_k+H_{sc}+H_{int}
\displaystyle H_{sc} =\sum_{m\zeta}\Delta_{m\zeta}\left[c_{m\zeta\uparrow}^{\dagger}c_{m\zeta\downarrow}^{\dagger}+\text{h.c.}\right]\\ H_{int}=\sum_{m\zeta}V_{m\zeta}\left [c^\dagger_{m\zeta\uparrow}c_{m\zeta\downarrow}c^\dagger_{(m+1)\zeta\downarrow}c_{(m+1)\zeta\uparrow}+\text{h.c.}\right]

Single particle spectrum

small \(B_y\) on the left for better visibility

Finite size DMRG calculations

gap remains finite !

\(V_L=1.7,\Delta_R=0.7\)

Finite size DMRG calculations

\(Length=12,\Delta_R=0.7\)

\(V_L\)

\(E-E_{GS}\)

4x degenerate!

gap !

no gap !

Properties of the ground state

\( \langle GS_p | n_i | GS_q \rangle \approx \delta_{pq}  \)

Interface on one side

H_{Z_4}=H_{\rm SC} + H_{W}
H_{\rm SC}= \; - \sum_{\sigma, j} t c_{\sigma, j}^{\dagger} c_{\sigma, j+1}-i \Delta c_{\bar{\sigma}, j}^{\dagger} c_{\sigma, j+1}^{\dagger} \\
\displaystyle H_{W}=-W \sum_{\sigma, j} \left [ c_{\sigma, j}^{\dagger} c_{\sigma, j+1}\left(-n_{\bar{\sigma}, j}-n_{\bar{\sigma}, j+1}\right)\right .\\ +c_{\sigma, j}^{\dagger} c_{\sigma, j+1}^{\dagger}\left(n_{\bar{\sigma}, j}-n_{\bar{\sigma}, j+1}\right) \\ + i c_{\sigma, j}^{\dagger} c_{\bar{\sigma}, j+1}\left(n_{\bar{\sigma}, j} - n_{\sigma, j+1}\right)^2 \\ \left . + i c_{\sigma, j}^{\dagger} c_{\bar{\sigma}, j+1}^{\dagger}\left( n_{\bar{\sigma}, j}- n_{\sigma, j+1}\right )^2 \right ]+ \text{H.c.}

Raphael L. R. C. Teixeira, Luis G. G. V. Dias da Silva Phys. Rev. Research 3, 033014 (2021)

Phase diagram of the Clock model derived fermionic system

The team

Osváth Botond, ELTE

Barcza Gergely, Wigner

Thanks

Parafermion summary

By László Oroszlány

Parafermion summary

  • 490