Breaking of Huygens-Fresnel principle in inhomogeneous Tomonaga-Luttinger liquids

Marek Gluza

presenting based on collaboration with

 Spyros Sotiriadis

Per Moosavi

\partial_{t}^{2} \hat{\phi} = 2 v(x) v'(x) \partial_{x} \hat{\phi} + v(x)^2 \partial^2_{x} \hat{\phi}
\partial_{t}^{2} \hat{\phi} = v(x)v'(x) \partial_{x} \hat{\phi} + v(x)^2\partial^2_{x} \hat{\phi}
\mapsto

NTU Singapore

Huygens-Fresnel principle

What would it mean Huygens-Fresnel principle is broken?

Wave-front propagation

pinned to light-cone

Wave-front leaking into light-cone

(x,t) \mapsto (\xi,\tau)

Is Huygens-Fresnel principle valid for quantum fluids?

The light-cone can be curved

(x,t) \mapsto (\xi,\tau)

Our contribution:

Is Huygens-Fresnel principle valid for quantum fluids?

\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)

Tomonaga-Luttinger liquid

Tomonaga-Luttinger liquid

Out-of-equilibrium phenomenology

H = \frac{1}{2} \int_{-R}^{R} \mathrm{d}x\, \biggl( \frac{v(x)}{K(x)} \pi (x)^2 + v(x)K(x) [\partial_{x} \hat{\phi}(x)]^2 + (M v_0)^2 v(x)K(x) \hat{\phi}(x)^2 \biggr)
\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)

hydrodynamics

 

Local signals stay local

Local signals propagate

with constant velocity

Local signals return

to the origin

​#Simple

Quantum field refrigerators in the TLL model:

System

Piston

Bath

Bath with excitations

System cooled down

Tomonaga-Luttinger liquid

Inhomogeneous

\hat H = \int_{0}^{L} \mathrm{d}x\,v(x) \biggl( {K(x)}^{-1} \hat\pi (x)^2 + K(x) \partial_{x} \hat{\phi}(x)^2 \biggr)
\hat H = \int_{0}^{L} \mathrm{d}x\,v(x) \biggl( {K}^{-1} \hat\pi (x)^2 + K \partial_{x} \hat{\phi}(x)^2 \biggr)
\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)

Tomonaga-Luttinger liquid

Inhomogeneous

\hat H = \int_{0}^{L} \mathrm{d}x\,v(x) \biggl( {K(x)}^{-1} \hat\pi (x)^2 + K(x) \partial_{x} \hat{\phi}(x)^2 \biggr)

Tomonaga-Luttinger liquid

Inhomogeneous

Local signals stay local?

Local signals propagate

with constant velocity?

Local signals return

to the origin?

#Complex

Out-of-equilibrium phenomenology

Energy of phonons

E
E
E
E

hydrodynamics

Tomonaga-Luttinger liquid

Cold atoms as

\hat H_\text{TLL} = \int_0^L \text{d}x\biggl( \frac{\hbar^2n_{GP}}{2m}\partial_x\hat\varphi^2+g\delta\hat\varrho^2\biggr)
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll
\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)

What if: The atom density will not be constant?

Tomonaga-Luttinger liquid

Cold atoms as

Tomonaga-Luttinger liquid

Cold atoms as

                           an inhomogeneous

\hat H_\text{TLL} = \int_0^L \text{d}x\biggl( \frac{\hbar^2n_{GP}}{2m}\partial_x\hat\varphi^2+g\delta\hat\varrho^2\biggr)
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll
\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)
\hat H = \int_{0}^{L} \mathrm{d}x\,v(x) \biggl( {K(x)}^{-1} \hat\pi (x)^2 + K(x) \partial_{x} \hat{\phi}(x)^2 \biggr)
n_\text{GP}(x)
{K(x)}
v(x)

Huygens-Fresnel principle

Huygens-Fresnel principle broken

Tomonaga-Luttinger liquid

Cold atoms as

                           an inhomogeneous

\hat H_\text{TLL} = \int_0^L \text{d}x\biggl( \frac{\hbar^2n_{GP}}{2m}\partial_x\hat\varphi^2+g\delta\hat\varrho^2\biggr)
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll
\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)
\hat H = \int_{0}^{L} \mathrm{d}x\,v(x) \biggl( {K(x)}^{-1} \hat\pi (x)^2 + K(x) \partial_{x} \hat{\phi}(x)^2 \biggr)
n_\text{GP}(x)
{K(x)}
v(x)

Huygens-Fresnel principle

Huygens-Fresnel principle broken

\partial_{t}^{2} \hat{\phi} = 2 v(x) v'(x) \partial_{x} \hat{\phi} + v(x)^2 \partial^2_{x} \hat{\phi}
\partial_{t}^{2} \hat{\phi} = v(x)v'(x) \partial_{x} \hat{\phi} + v(x)^2\partial^2_{x} \hat{\phi}
\mapsto

Breaking of Huygens-Fresnel principle in inhomogeneous Tomonaga-Luttinger liquids

Marek Gluza

 Spyros Sotiriadis

Per Moosavi

\partial_{t}^{2} \hat{\phi} = 2 v(x) v'(x) \partial_{x} \hat{\phi} + v(x)^2 \partial^2_{x} \hat{\phi}
\partial_{t}^{2} \hat{\phi} = v(x)v'(x) \partial_{x} \hat{\phi} + v(x)^2\partial^2_{x} \hat{\phi}
\mapsto

NTU Singapore

Breaking of Huygens-Fresnel principle in inhomogeneous Tomonaga-Luttinger liquids

By Marek Gluza

Breaking of Huygens-Fresnel principle in inhomogeneous Tomonaga-Luttinger liquids

  • 200