Lecture:

Quantum

compiling

Marek Gluza

NTU Singapore

slides.com/marekgluza

*Background explanation: It's a primitive bricklayer!

What is our quantum computer?

What is a universal quantum computer?

|\psi\rangle = a | 0 \rangle + b | 1\rangle
|\psi\rangle = a | 00 \rangle + b | 10\rangle+c | 01 \rangle + b | 11\rangle
|\psi\rangle = a | 000 \rangle + b | 100\rangle+c | 010 \rangle + d | 100\rangle+ e | 011 \rangle + f | 101\rangle+g | 110 \rangle +h | 111\rangle
|\psi\rangle = a | 0000 \rangle + b | 1000\rangle+c | 0100 \rangle + d | 1000\rangle+ e | 0011 \rangle + f | 0101\rangle+g | 1010 \rangle +h | 1100\rangle + \ldots

1 qubit

2 qubits

3 qubits

4 qubits

And you get the idea lah

|\psi\rangle = U |00\ldots0\rangle \Rightarrow U \approx U_c

we will approximate via circuits

It's all about the group of unitary matrices

U(n) = \{ M\in \mathbb C^{n\times n}: M^{-1} = M^\dagger\}
M,M' \in U(n) \Rightarrow (M M')(MM')^\dagger = M M'(M')^\dagger M^\dagger
= M M^\dagger = I
M,M' \in U(n) \Rightarrow M M'\in U(n)
M \in U(n) \Rightarrow \exist H: M = e^{i H}

What is a quantum algorithm?

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

C

What is a quantum computer?

It's an experimental setup A which includes a quantum system B and that setup A allows to manipulate the quantum state of B.

What is a quantum algorithm?

0

0

0

0

C

What is a universal quantum computer?

It's an experimental setup which includes a quantum system and that setup allows to manipulate its quantum state.

It's an experimental setup which includes few-level quantum systems and that setup allows to manipulate the quantum state using gates.

These gates form a universal gate set which means that if you apply sufficiently many you will be able to reach any desired quantum state.

What are quantum gates?

|\psi\rangle = a | 0 \rangle + b | 1\rangle
|+\rangle = \frac 1 {\sqrt 2} (| 0 \rangle + | 1\rangle)

What are quantum gates?

|\psi\rangle = | 0 \rangle
Z|0\rangle = | 0\rangle
Z|\mu\rangle = (-1)^\mu| \mu\rangle

Useful notation

Exercise: By evaluating the determinant, prove that it's impossible to apply Z in the lab

What are quantum gates?

|\psi\rangle = | 0 \rangle
|+\rangle = \frac 1 {\sqrt 2} (| 0 \rangle + | 1\rangle)

Use the quantum computer to transform

into

Trivial quantum algorithm solves it:

Apply the Haddamard gate

H = \frac 1 {\sqrt 2} \begin{pmatrix} 1 & 1 \\ 1 &- 1\end{pmatrix}

0

H

What are all single qubit quantum gates?

What are 2 qubit quantum gates?

|\psi\rangle = | 0 \rangle \otimes |0\rangle
|+\rangle \otimes |+\rangle = \frac 1 { 2} (| 0 0\rangle + | 01\rangle+|10\rangle + | 11\rangle)

Use the quantum computer to transform

into

Apply the Haddamard gate on each qubit

H\otimes H

0

H

0

H

What are quantum gates?

|\psi\rangle = | 0 \rangle \otimes |0\rangle
|\Phi\rangle = \frac 1 { \sqrt 2} (| 0 0\rangle + | 11\rangle)

Use the quantum computer to transform

into

Apply the Haddamard gate on each qubit

H\otimes 1

and then apply the controlled-not gate

\text{CNOT} = |0\rangle\langle 0|\otimes 1 + |1\rangle\langle1 |\otimes X
H

0

0

+

Universal gate set "Ising + single qubit"

g_{XX}(t) = e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i}
g_Z(i) = e^{-itZ_i }

0

0

0

0

Universal gate set #2

CZ
g_X = e^{-itX_i}
g_Z = e^{-itZ_i }
= \begin{pmatrix} 1 & 0 &0 & 0\\ 0& 1 &0 & 0\\ 0&0&1&0 \\ 0&0&0 &- 1\end{pmatrix}

Universal gate set #3: Surface code

CZ
T_i = e^{-i\pi/4 X_i}
Z_i
= \begin{pmatrix} 1 & 0 &0 & 0\\ 0& 1 &0 & 0\\ 0&0&1&0 \\ 0&0&0 &- 1\end{pmatrix}
X_i

About CZ

 

I\otimes Z = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& -1 &0 & 0\\ 0&0&1&0 \\ 0&0&0 &- 1\end{pmatrix}
Z\otimes I = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& 1 &0 & 0\\ 0&0&-1&0 \\ 0&0&0 &- 1\end{pmatrix}
Z\otimes Z = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& -1 &0 & 0\\ 0&0&-1&0 \\ 0&0&0 & 1\end{pmatrix}

About CZ

 

I\otimes Z = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& -1 &0 & 0\\ 0&0&1&0 \\ 0&0&0 &- 1\end{pmatrix}
Z\otimes I = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& 1 &0 & 0\\ 0&0&-1&0 \\ 0&0&0 &- 1\end{pmatrix}
Z\otimes Z = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& -1 &0 & 0\\ 0&0&-1&0 \\ 0&0&0 & 1\end{pmatrix}
2 I\otimes I -Z\otimes I- I\otimes Z + Z\otimes Z = \begin{pmatrix} 1 & 0 &0 & 0\\ 0& 1 &0 & 0\\ 0&0&1&0 \\ 0&0&0 &- 1\end{pmatrix}

Exercise: derive this using the Hilbert-Schmidt scalar product.

Implementing CZ

 

\text{CZ} = e^{i \frac \pi 2 ( Z\otimes I + I\otimes Z - Z\otimes Z)}
g_{XX}(t) = e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i}
g_Z(i) = e^{-itZ_i }

0

0

0

0

Exercise: Use commutation relations and BCH formula to implement CZ with the Ising gate set

All 2 qubit operations

CNOT
g_X = e^{-itX_i}
g_Z = e^{-itZ_i }

About CNOT

+

\text{CNOT} = |0\rangle\langle 0|\otimes 1 + |1\rangle\langle1 |\otimes X
\text{CZ} = |0\rangle\langle 0|\otimes 1 + |1\rangle\langle1 |\otimes Z
= \begin{pmatrix} 1 & 0 &0 & 0\\ 0& 1 &0 & 0\\ 0&0&1&0 \\ 0&0&0 &- 1\end{pmatrix}
= (1\otimes H) CNOT (1\otimes H)

Swap gate from CNOT

SWAP = \begin{bmatrix} 1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\end{bmatrix}
SWAP=\frac{I\otimes I +X\otimes X+Y\otimes Y+Z\otimes Z}{2}

Universality is generic:

Universal gate set "Ising + single qubit"

g_{XX}(t) = e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i}
g_Z(i) = e^{-itZ_i }

0

0

0

0

How can we use it to implement any unitary?

Universal quantum computation

How can we use it to implement any unitary?

U(n) = \{ M\in \mathbb C^{n\times n}: M^{-1} = M^\dagger\}
SU(n) = \{ M\in U(n): det(M)=1\}
= \{ exp(i H): H=H^\dagger, tr(H)=0\}

Implement its Hamiltonian

Implementing Hamiltonians

H = \sum_{\mu,\nu\in\{0,1\}^{\times L}} \langle Z(\mu)X(\nu),H\rangle Z(\mu)X(\nu)
H + H' = H^\dagger +(H')^\dagger =(H +H')^\dagger

Hermitian matrices are a vector space

W_{\mu,\nu} = Z(\mu)X(\nu)

Is a basis

Orthonormal

expansion

In the exam* you will prove

W_{\mu,\nu} = Z(\mu)X(\nu)

Is a basis

Z(\mu) =\otimes_{k=1}^L(\sigma^z)^{\mu_k}
X(\nu) =\otimes_{k=1}^L(\sigma^x)^{\nu_k}

How to get

Z_i =I^{\otimes (i-1)} \sigma^z\otimes I^{L-i}
e_i= (0,0,\ldots 1 @ i, 0\ldots)
Z(e_i) = Z_i

* This is super important, so what if it was on some exam? Could you prove it?

In the exam you will prove

W_{\mu,\nu} = Z(\mu)X(\nu)

Is a basis

Z(\mu) =\otimes_{k=1}^L(\sigma^z)^{\mu_k}
X(\nu) =\otimes_{k=1}^L(\sigma^x)^{\nu_k}

How to get

Y_i =I^{\otimes (i-1)} \sigma^y\otimes I^{L-i}
e_i= (0,0,\ldots 1 @ i, 0\ldots)
Z(e_i)X(e_i) \propto Y_i

Universal quantum computation

SU(n) = \{ exp(i H): H=H^\dagger, tr(H)=0\}
H = \sum_{\mu,\nu\in\{0,1\}^{\times L}} \langle Z(\mu)X(\nu),H\rangle Z(\mu)X(\nu)
H = \sum_{\mu,\nu\in\{0,1\}^{\times L}}H_{\mu,\nu} Z(\mu)X(\nu)

Universal quantum computation

SU(n) = \{ exp(i H): H=H^\dagger, tr(H)=0\}
H = \sum_{\mu,\nu\in\{0,1\}^{\times L}}H_{\mu,\nu} Z(\mu)X(\nu)
U=e^{it H} \equiv e^{i H'}
U=e^{it H} \neq \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}e^{iH_{\mu,\nu} Z(\mu)X(\nu)}\right )

Trotter-Suzuki decomposition

\hat H_\text{TFIM} = \sum_{i=1}^{L-1}X_iX_{i+1}+\sum_{i=1}^L Z_i\\ \equiv \hat H_X +\hat H_Z
|\psi(t)\rangle = e^{-it \hat H_\text{TFIM}}{|0\rangle}^{\otimes L}
|\psi(t)\rangle = \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N{|0\rangle}^{\otimes L} + \hat E{|0\rangle}^{\otimes L}
g_{XX}(t) = e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i}
g_Z(i) = e^{-itZ_i }

0

0

0

0

Trotter-Suzuki decomposition

\|\hat E\| = \|e^{-it(\hat H_X +\hat H_Z)} - \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N\|
\le \frac{t^2}N\|[\hat H_X,\hat H_Z]\|

Why does it work?

BCH formula

e^{-it( \hat H_X +\hat H_Z)}=e^{-it\hat H_X }e^{-it\hat H_Z}e^{-i\frac {t^2}2[\hat H_X ,\hat H_Z]}\ldots
\|\mathbb 1 - e^{-i\frac {t^2}2[\hat H_X ,\hat H_Z]}\| \le \frac {t^2}2 \|[ \hat H_X ,\hat H_Z]\|

Conclusion: For short evolution time we're happy

How to implement Trotter-Suzuki?

e^{-it\hat H_X}=\prod_{i=1}^{L-1}e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i X_{i+1}}
g_Z(i) = e^{-itZ_i }

Use Solovay-Kitaev algorithm to compile these gates but usually they are the primitive gates

(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z})^N{|0\rangle}^{\otimes L}

0

0

0

0

Exercise: Local error bound

Q_x = e^{i(1-x)A}e^{i(1-x)B}e^{ix(A+B)}
Q_1 = e^{i(A+B)}
Q_0 = e^{i A}e^{i B}
\partial_x Q_x = e^{i(1-x)A}\left(-A-B+ A_B+B\right)e^{i(1-x)B} e^{ix(A+B)}
A_B = e^{i(1-x)B}A e^{-i(1-x)B} = A + i e^{i\xi_x B}[A,B] e^{-i\xi_x B}
\|Q_0-Q_1\| =\| \int_0^1 dx \partial_x Q_x\| = \|[A,B]\|

Exercise: Non-commutative identity

X^m - Y^m = \sum_{j=0}^{m-1}X^{m-1-j}(X-Y)Y^j
\le \sum_{j=0}^{N-1}\|e^{-i (N-1-j)\frac tN \hat H_X}(e^{-i\frac tN \hat H_X}-e^{-i\frac tN \hat H_Z})e^{-ij\frac tN \hat H_Z}\|
\|e^{-it(\hat H_X +\hat H_Z)} - \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N\|
\le \sum_{j=0}^{N-1}\|e^{-i \frac tN \hat H_X}-e^{-i\frac tN \hat H_Z}\| \le \frac{t^2}N \|[H_X,H_Z]\|

cf.:

x^m -y ^m = (x-y)\sum_{j=0}^{m-1}x^{m-1-j}y^j

Application to physics:

Universal quantum computation

SU(n) = \{ exp(i H): H=H^\dagger, tr(H)=0\}
H = \sum_{\mu,\nu\in\{0,1\}^{\times L}}H_{\mu,\nu} Z(\mu)X(\nu)
U=e^{it H} \neq \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}e^{iH_{\mu,\nu} Z(\mu)X(\nu)}\right )
U=e^{it H} = \lim_{N\rightarrow \infty} \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}e^{i\frac 1N H_{\mu,\nu} Z(\mu)X(\nu)}\right )^N

Constructive quantum compilation

SU(n) = \{ exp(i H): H=H^\dagger, tr(H)=0\}
H = \sum_{\mu,\nu\in\{0,1\}^{\times L}}H_{\mu,\nu} Z(\mu)X(\nu)
U=e^{it H} = \lim_{N\rightarrow \infty} \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}e^{i\frac 1N H_{\mu,\nu} Z(\mu)X(\nu)}\right )^N

How to get

Clifford circuits

W_{\mu,\nu} = Z(\mu)X(\nu)

For every

There exists

 

C_{\mu,\nu} \in U(n)

Such that

C_{\mu,\nu} W_{\mu,\nu} C_{\mu,\nu}^\dagger= Z_1

Super crucial exam formula

H' = UHU^\dagger
e^{iH'} = Ue^{iH}U^\dagger
\Rightarrow
C_{\mu,\nu} \in U(n)
C_{\mu,\nu} W_{\mu,\nu} C_{\mu,\nu}^\dagger= Z_1
U \in U(n)

Super crucial exclam formula

\Rightarrow
e^{iW_{\mu,\nu}'} =C_{\mu,\nu}^\dagger e^{iZ_1}C_{\mu,\nu}

Super cool exciting formula

U=e^{it H} = \lim_{N\rightarrow \infty} \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}e^{i\frac 1N H_{\mu,\nu} Z(\mu)X(\nu)}\right )^N
U=e^{it H} = \lim_{N\rightarrow \infty} \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}C_{\mu,\nu}^\dagger e^{i\frac 1 N H_{\mu,\nu}Z_1}C_{\mu,\nu}\right )^N

Super cool exclam formula

U=e^{it H} = \lim_{N\rightarrow \infty} \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}C_{\mu,\nu}^\dagger e^{i\frac 1 N H_{\mu,\nu}\sigma^z}\otimes I^{\otimes L-1}C_{\mu,\nu}\right )^N

In this (insane) model: all we ever do is make infinitesimally small rotations on qubit 1 and then distribute that onto all the other qubits using Clifford operations

Surely, there must be better ways?!

Addendum: Clifford circuits

W_{\mu,\nu} = Z(\mu)X(\nu)

For every

There exists

 

C_{\mu,\nu} \in U(n)

Such that

C_{\mu,\nu} W_{\mu,\nu} C_{\mu,\nu}^\dagger= Z_1

Addendum: formal definition Clifford circuits

W_{\mu,\nu,q} = q Z(\mu)X(\nu)
W_{\mu,\nu,q} W_{\mu',\nu',q}= q'' Z(\mu'')X(\nu'')=W_{\mu'',\nu'',q''}

This is called the Pauli group

\mathcal P(L)

Addendum: formal definition Clifford circuits

W_{\mu,\nu,q} = q Z(\mu)X(\nu)

Pauli operators have essentially the same spectrum

Z(\mu) =\otimes_{k=1}^L(\sigma^z)^{\mu_k}
X(\nu) =\otimes_{k=1}^L(\sigma^x)^{\nu_k}
Z(\mu)|\mu\rangle = \otimes Z^{\mu_k}|\mu_k\rangle= \otimes (-1)^{\mu_k}|\mu_k\rangle
X(\mu)|\mu\rangle_+ = \otimes X^{\mu_k}|\mu_k\rangle_+= \otimes (-1)^{\mu_k}|\mu_k\rangle_+

There must be unitary operators mapping them to each other

U_{\mu,\nu,q}^\dagger W_{\mu,\nu,q} U_{\mu,\nu,q} W_{\mu',\nu',q}

Addendum: formal definition Clifford circuits

W_{\mu,\nu,q} = q Z(\mu)X(\nu)
C(L) = \{ U\in U(L) \text{ s.t. } U\mathcal P(L)U^\dagger = \mathcal P(L)\}

All you need is single qubit and CNOTs

U=e^{it H} = \lim_{N\rightarrow \infty} \left( \prod_{\mu,\nu\in\{0,1\}^{\times L}}C_{\mu,\nu}^\dagger e^{i\frac 1 N H_{\mu,\nu}\sigma^z}\otimes I^{\otimes L-1}C_{\mu,\nu}\right )^N
|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a laptop?

How to compute it on a quantum computer?

Hamiltonian simulation

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a laptop?

For qubits, your laptop can do ~13 spins at finite temperature and ~25 spins for a pure state (use sparsity)

\begin{pmatrix}1\\0\end{pmatrix}\otimes \begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}

At the end of the day:

Workarounds:

Hamiltonian simulation

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a quantum computer?

Use quantum algorithms 'Hamiltonian simulation'

Trotter-Suzuki

Linear combination of unitaries

Qubitization

Randomized compiler

Hamiltonian simulation

Truncated series

P: Runs easily

BPP: Often runs easily

BQP: Often quantums easily

NP: Optimizes easily

QMA

P: Runs easily

BPP: Often runs easily

BQP: Often quantums easily

NP: Optimizes easily

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 1: Show that it's unitary

C(U,V) \, C(U,V)^\dagger = |0\rangle\langle 0| \otimes UU^\dagger + |1\rangle\langle 1| \otimes V V^\dagger = \mathbb 1

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 2: Apply to flag qubit in superposition

C(U,V) (|0\rangle + |1\rangle) \otimes |\psi\rangle = |0\rangle \otimes U |\psi\rangle + |1\rangle \otimes V |\psi\rangle

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 3: Consider what happens if applied to superposition:

(R_x(\theta)\otimes 1)C(U,V) |+\rangle \otimes |\psi\rangle =
R_x(\theta) |0\rangle = c |0\rangle+ s |1\rangle
R_x(\theta) |1\rangle = c |1\rangle -s |0\rangle
|0\rangle \otimes (cU -s V) |\psi\rangle + |1\rangle \otimes (cV +sU) |\psi\rangle

Key idea for post-Trotter methods

C(U,V) = |0\rangle\langle 0| \otimes U + |1\rangle\langle 1| \otimes V

Step 4: Assume flag is measured with outcome 1 and discard it

(P_+\otimes 1)(R_x(\theta)\otimes 1)C(U,V) |+\rangle \otimes |\psi\rangle \propto (cU+s V) |\psi\rangle
R_x(\theta) |0\rangle = c |0\rangle+ s |1\rangle
R_x(\theta) |1\rangle = c |1\rangle -s |0\rangle

Conclusion: We can (probabilistically) apply (normalized) sums of unitary operators

Key idea for reliable post-Trotter methods

R = 1 - 2|\phi\rangle\langle \phi|

Grover reflector

Step 1: Show that it's unitary

...

Key idea for reliable post-Trotter methods

R = 1 - 2|\phi\rangle\langle \phi|

Grover reflector

Step 2: Consider applying it to a state overlapping with it

R(|\phi\rangle + |\phi^\perp\rangle) \propto - |\phi\rangle+ |\phi^\perp\rangle

Key idea for reliable post-Trotter methods

R = 1 - 2|\phi\rangle\langle \phi|

Grover reflector

Step 3: Reflect around the linear combination of unitaries

This is also called oblivious amplitude amplification, and the crux is in making this efficiently and obliviously i.e. without knowing or destroying the reflector state

R_{c,s} = Q(1-|\phi\rangle\langle \phi|)Q^\dagger

Gaussian quantum simulators

How?

Ultra-cold 1d gases

Inside: atoms

Outside:  wavepackets

hydrodynamics

 

Energy of phonons

E
E
E
E
\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll

Tomonaga-Luttinger liquid

Quantum field refrigerators in the TLL model:

System

Piston

Bath

Bath with excitations

System cooled down

 Breaking of the Huygens-Fresnel principle

 in the inhomogenous TLL model:

Why?

Why develop continuous field

quantum simulators?

  • Representation theory: Quantum information?
  • Continuum limits: BQP and QMA or more?
  • Are nanowires computationally hard to simulate?

What do we know is difficult?

SM

Fundamental

Universal

Effective

Why develop continuous field

quantum simulators?

  • Representation theory: Quantum information?
  • Continuum limits: BQP and QMA or more?
  • Are nanowires computationally hard to simulate?

What do we know is difficult?

SM

Fundamental

Universal

Effective

Non-thermal

steady states

Sine-Gordon

thermal states

Atomtronics

Generalized hydrodynamics

Recurrences

Some highlights:

Interferometry measures velocities

van Nieuwkerk, Schmiedmayer, Essler, arXiv:1806.02626

Schumm, Schmiedmayer, Kruger, et al., arXiv:quant-ph/0507047

\partial_z\hat \varphi(z) \approx\frac{\hat \varphi(z)-\hat \varphi(z+\Delta z)}{\Delta z}
\partial_z\hat \varphi(z) \approx\frac{\Delta\hat\varphi(z)}{\Delta z}
\Delta z

Tomography

Tomography for phonons

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Tomography for phonons

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

What are eigenmodes?

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\hat \phi_k = \int_0^L dz \cos(\pi k z/L)\hat \varphi(z)
\int_0^L dz \cos(\pi k z/L)\cos(\pi k'z/L) = \delta_{k,k'}

Transmutation

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \hat\phi_k^2(0)\rangle +\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\langle\hat \phi_k^2(t)\rangle= \langle \hat\phi_k^2(0)\rangle
\langle\hat \phi_k^2(t)\rangle= \langle \delta\hat \rho_k^2(0)\rangle
t=0:
t=\frac{\pi}{2\omega_k}:
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Tomography

A_{1,2}= \sin^2(\omega_k t_1 )
A_{1,1}= \cos^2(\omega_k t_1)
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \hat\phi_k^2(0)\rangle+ \sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
A_{3,2}= \sin^2(\omega_k t_3 )
A_{3,1}= \cos^2(\omega_k t_3)
A_{2,2}= \sin^2(\omega_k t_2 )
A_{2,1}= \cos^2(\omega_k t_2)
A \begin{pmatrix} \langle \hat\phi_k^2(0)\rangle \\\langle \delta\hat \rho_k^2(0)\rangle \end{pmatrix} =\begin{pmatrix} \langle \hat\phi_k^2(t_1)\rangle \\\langle \hat\phi_k^2(t_2)\rangle \\\langle \hat\phi_k^2(t_3)\rangle \end{pmatrix}
\|Aq - d\| = \text{min}

(This formalism: Tomography for many modes)

Tomography Klein-Gordon thermal state after quench

\hat H_\text{KG}=\hat H_\text{TLL}+J\int \mathrm{d}z \,n_{GP} \hat \varphi^2

Extracting physical properties

Extracting physical properties

Extracting physical properties

Tomography for optical lattices

Material science?

0

0

0

0

C

Diagonalization quantum algorithm

DSF of Rydberg arrays

Phonon tomography

Optical lattice tomography

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Ask me anytime:

 

[11,16]

[7, 14, 15]

0

0

0

0

C

Fidelity witnesses

Tomography optical lattices

Tomography phonons

Proving statistical mechanics

Quantum simulating DSF

Holography in tensor networks

PEPS contraction average #P-hard

Quantum field machine

MBL l-bits

(click links at slides.com/marekgluza

Lecture: Quantum compiling

By Marek Gluza

Lecture: Quantum compiling

  • 221