Double-bracket  quantum algorithms for diagonalization

Marek Gluza

NTU Singapore

slides.com/marekgluza

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

no qubit overheads

no controlled-unitaries

0

0

0

0

C

0

0

0

0

Simple

=

Easy

Doesn't spark joy :(

New quantum algorithm for diagonalization

\hat H \mapsto \hat H_\ell = \hat U_\ell^\dagger \hat H \hat U_\ell
\partial_\ell \hat H_\ell = [[A(\hat H_\ell),B(\hat H_\ell)], \hat H_\ell]

building useful quantum algorithms

new approach to preparing useful states

building useful variational circuits

tons of fun maths in the appendix

no qubit overheads

no controlled-unitaries

0

0

0

0

Why double a bracket?

\partial_t \hat A(t) = i [ \hat H(t), \hat A(t)]
\partial_t \hat A(t) = [ \hat H(t), [\hat H(t), \hat A(t)]]
\hat H_1 = e^{s_0 \hat W_0} \hat H_0 e^{-s_0 \hat W_0}
\hat W_0 = [\hat D_0,\hat H_0]

Double-bracket rotation ansatz

antihermitian

\left(i\hat H\right)^\dagger = -i \hat H

Rotation generator:

Input:

Unitary rotation:

 

e^{s \hat W_0}
\hat H_0

Double-bracket rotation:

 

\partial_s \hat H_0(s) = [\hat W_0, \hat H_0]
\Leftrightarrow
= [[\hat D_0, \hat H_0], \hat H_0(s)]
\hat H_1 = e^{s_0 \hat W_0} \hat H_0 e^{-s_0 \hat W_0}
\hat W_0 = [\hat D_0,\hat H_0]

Double-bracket rotation ansatz

Rotation generator:

Input:

Unitary rotation:

 

e^{s \hat W_0}
\hat H_0

Double-bracket rotation:

 

\hat D_0

- diagonal operator

today: how to choose it to diagonalize and not get stuck?

\hat H_1 = e^{s_0 \hat W_0} \hat H_0 e^{-s_0 \hat W_0}
\hat W_0 = [\hat D_0,\hat H_0]

Double-bracket rotation ansatz

Rotation generator:

Input:

Unitary rotation:

 

e^{s \hat W_0}
\hat H_0

Double-bracket rotation:

 

\hat H_\text{TFIM} = \sum_{i=1}^{L-1}\hat X_i\hat X_{i+1}+\sum_{i=1}^L \hat Z_i
\hat H(s) = e^{s \hat W_0} \hat H_0 e^{-s \hat W_0}
\hat W_0 = [\hat D_0,\hat H_0]

Double-bracket rotation ansatz

Rotation generator:

Input:

\hat H_0

Double-bracket rotation:

 

\sigma(\hat H_\ell)

Restriction to off-diagonal

\partial_s \|\sigma(\hat H_0(s))\|_{\text{HS}}^2 = -2\langle \hat W_0,[\hat H_0, \sigma(\hat H_0)]\rangle_{\text{HS}}

Lemma:

Proof: Taylor expand, shuffle around (fun!)

\hat H(s) = e^{s \hat W_0} \hat H_0 e^{-s \hat W_0}
\hat W_0 = [\hat D_0,\hat H_0]

Double-bracket rotation ansatz

Rotation generator:

Input:

\hat H_0

Double-bracket rotation:

 

\sigma(\hat H_\ell)

Restriction to off-diagonal

\partial_s \|\sigma(\hat H_0(s))\|_{\text{HS}}^2 = -2\langle \hat W_0,[\hat H_0, \sigma(\hat H_0)]\rangle_{\text{HS}}

Lemma:

Proof: Taylor expand, shuffle around (fun!)

A new approach to diagonalization on a quantum computer

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_k = [D_{k-1},\hat H_{k-1}]
\hat H_k = e^{s \hat W_k} \hat H_{k-1} e^{-s \hat W_k}
\hat H_\text{TFIM} = \sum_{i=1}^{L-1}\hat X_i\hat X_{i+1}+\sum_{i=1}^L \hat Z_i

Double-bracket iteration

\hat W_1 = [\hat D_0,\hat H_0]
\partial_\ell \hat H_\ell = [\hat W_\ell, \hat H_\ell]
\hat W_\ell = [\Delta(\hat H_\ell),\sigma(\hat H_\ell)]
\Delta(\hat H_\ell)
\sigma(\hat H_\ell)

Głazek-Wilson-Wegner flow

Restriction to off-diagonal

Restriction to diagonal

\partial_\ell \|\sigma(\hat H_\ell)\|_{\text{HS}}^2 = -2\|\hat W_\ell\|_{\text{HS}}^2 \le 0

as a quantum algorithm

(addendo: where it's coming from)

\text{Unitary } \hat U_\ell \text{ such that }
\hat W_\ell = [\Delta(\hat H_\ell),\sigma(\hat H_\ell)]

Głazek-Wilson-Wegner flow

\partial_\ell \|\sigma(\hat H_\ell)\|_{\text{HS}}^2 = -2\|\hat W_\ell\|_{\text{HS}}^2 \le 0

as a quantum algorithm

\hat H_\ell = \hat U_\ell \hat H_0 \hat U_\ell^\dagger
\partial_\ell \hat H_\ell = [\hat W_\ell, \hat H_\ell]

(addendo: where it's coming from)

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat D_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat C_s(\hat J) = \left( \hat D_{\sqrt{s/K}}(\hat J)^\dagger \;e^{i\sqrt{s/K}\hat J}\;\hat D_{\sqrt{s/K}}(\hat J)\;e^{-i\sqrt{s/K}\hat J}\right)^K

1) Dephasing

2) Group commutator

3) Frame shifting

\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]
\hat V_k = \hat C_s(\hat J_{1})\; \hat C_s(\hat J_{2})\ldots \hat C_s(\hat J_{k-1}) \approx e^{-s \hat W_1}\;e^{-s \hat W_2}\ldots e^{-s \hat W_{k-1}}

How to understand the continuous flow?

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_1 = [\hat H,\sigma(\hat H)]
\hat W_k = [\hat H_{k-1},\sigma(\hat H_{k-1})]
\hat H_k = e^{s \hat W_k} \hat H_{k-1} e^{-s \hat W_k}
\hat H_\text{TFIM} = \sum_{i=1}^{L-1}\hat X_i\hat X_{i+1}+\sum_{i=1}^L \hat Z_i

Piece-wise constant GWW flow discretization

antihermitian

unitary

\left(i\hat H\right)^\dagger = -i \hat H
\hat W_k = [\hat D_{k-1},\hat H_{k-1}]
\hat H_k = e^{s_k \hat W_k} \hat H_{k-1} e^{-s_k \hat W_k}

Double-bracket iteration

s_k

Rotation durations:

Input:

\hat H_0
\hat D_k

Diagonal generators:

A new approach to diagonalization on a quantum computer

Great: we can diagonalize

How to quantum compile?

How to quantum?

Group commutator

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell

0

0

0

0

Want

\hat H_{k+1} = e^{s \hat W_k} \hat H_k e^{-s \hat W_k}
\hat W_k = [\hat D_k, \hat H_k]
e^{i\sqrt{s_k}\hat D_k}e^{i\sqrt{s_k}\hat H_k}e^{-i\sqrt{s_k}\hat D_k}e^{-i\sqrt{s_k}\hat H_k}= e^{-s[\hat D_k,\hat H_k]} +\hat E^\text{(GC)}

New bound

\|\hat E^\text{(GC)}\| \le 4\|\hat H_0\|\,\|[\hat D_k, \hat H_k]\| s^3

Group commutator

0

0

0

0

Frame shifting:

\hat H_{k} = \hat U_k^\dagger \hat H_0 \hat U_k
V_0 = e^{i\sqrt{s_0}\hat D_0}e^{i\sqrt{s_0}\hat H_0}e^{-i\sqrt{s_0}\hat D_0}e^{-i\sqrt{s_0}\hat H_0}
e^{-it \hat H_{k} } = e^{-t \hat U_k^\dagger \hat H_0 \hat U_k}= \hat U_k^\dagger e^{-t \hat H_0} \hat U_k
V_1 = e^{i\sqrt{s_1}\hat D_1}\hat V_{0}^\dagger e^{i\sqrt{s_1}\hat H_{0}}\hat V_0 e^{-i\sqrt{s_1}\hat D_1}V_{0}^\dagger e^{-i\sqrt{s_1}\hat H_{0}}\hat V_0
U_k = V_0 V_1 \ldots V_k
V_k = e^{i\sqrt{s_k}\hat D_k}\hat U_{k-1}^\dagger e^{i\sqrt{s_k}\hat H_{0}}\hat U_{k-1} e^{-i\sqrt{s_k}\hat D_k}\hat U_{k-1}^\dagger e^{-i\sqrt{s_k}\hat H_{0}}\hat U_{k-1}

We get a recursive quantum algorithm:

the Hamiltonian tells us how to diagonalize itself

\hat W_k = [\hat D_{k-1},\hat H_{k-1}]
\hat H_k = e^{s_k \hat W_k} \hat H_{k-1} e^{-s_k \hat W_k}

Double-bracket iteration

s_k

Rotation durations:

Input:

\hat H_0
\hat D_k

Diagonal generators:

A new approach to diagonalization on a quantum computer

Great: we can diagonalize

How to quantum compile?

Replace by the group commutator

e^{-s[\hat D_k,\hat H_k]}\approx e^{i\sqrt{s}\hat D_k}e^{i\sqrt{s}\hat H_k}e^{-i\sqrt{s}\hat D_k}e^{-i\sqrt{s}\hat H_k}

Group commutator iteration

\hat V_k = e^{i\sqrt{s_k}\hat D_k}e^{i\sqrt{s_k}\hat H_k}e^{-i\sqrt{s_k}\hat D_k}e^{-i\sqrt{s_k}\hat H_k}
\hat H_{k+1} = \hat V_{k}^\dagger\hat H_{k} \hat V_k
\hat V_{k} = e^{-s[\hat D_{k},\hat H_{k}]}

Double-bracket iteration

Double-bracket iteration

Transition from theory to QPUs

Follow

QIBO implementation

on Github

 

github.com/qiboteam/qibo/

How well does it work?

Variational flow example 

Notice the steady increase of diagonal dominance.

Variational vs. GWW flow

Notice that degeneracies limit GWW diagonalization but variational brackets can lift them.

GWW for 9 qubits

Notice the spectrum is almost converged.

How does it work again?

GWW for 9 qubits

Notice that some of them are essentially eigenstates!

How to dynamically program quantum?

Classical recursion

f_{k+1} = f_k+f_{k-1}
|\psi_{k+1}\rangle = U^{(\psi_k)} |\psi_k\rangle

For example:

U^{(\psi)} = 1 -2|\psi\rangle\langle \psi|

or

U^{(\psi )} = e^{is D} e^{is \hat \psi} e^{-is D}

Quantum recursion

 

Group commutator iterations

diagonalizing \(\hat \psi\)

are in this form

Quantum Dynamic Programming

 

  • Memory usage query: trace out (consume) an instruction state
  • Memory usage query: Repeat this procedure M times
\mathcal{E}_s^{(N,\rho)}(\sigma) = Tr_\rho [e^{-iNs} (\rho\otimes\sigma) e^{iNs}]
E^{(\mathcal{N},\rho)}(\sigma) = e^{i\mathcal{N}(\rho)} \sigma e^{-i\mathcal{N}(\rho)}
\mathcal{E}^{(\mathcal{N},\rho,M)}_{QDP} \coloneqq (\mathcal{E}^{(\mathcal{N},\rho)}_{1/M})^M = E^{(\mathcal{N},\rho)} + O(1/M)

Quantum recursion

 

|\psi_{k+1}\rangle = U^{(\psi_k)} |\psi_k\rangle
U^{(\psi_k)} = e^{i\mathcal{N}(\rho)}

 

  • What we want memory call unitary:

     
  • QDP does this by using memory usage query:


    here \(N\) is the partial transpose of the Choi matrix of \(\mathcal N\)

Quantum Dynamic Programming

arxiv:2403.09187 

with J. Son, R. Takagi and N. Ng

QDP code structure

Github PR #1302 

with Kay Giang

Talk on Tuesday

What's going on?

Double-bracket flow

Unitary 

Satisfies a generalization of the Heisenberg equation

\hat H_\ell = \hat U_\ell^\dagger \hat H \hat U_\ell
\partial_\ell \hat H_\ell = [[A(\hat H_\ell),B(\hat H_\ell)], \hat H_\ell]
\hat U_\ell

GWW is a particular example

\partial_\ell \hat H_\ell = [[\Delta(\hat H_\ell),\sigma(\hat H_\ell)], \hat H_\ell]

transformation of 

\hat H
\hat H_s = e^{s \hat W^{(Z)}} \hat H e^{-s \hat W^{(Z)}}
\hat W^{(Z)} = [\Delta^{(Z)}(\hat H), \hat H ],
\partial_s \|\sigma(\hat H_s)\|_{\text{HS}}^2 = -2\langle \hat W^{(Z)},\hat W\rangle_{\text{HS}}
\Delta^{(Z)}(\hat H) \text{ - diagonal}

Variational double-bracket flows

that are diagonalizing

\partial_\ell \|\sigma(\hat H_\ell)\|_{\text{HS}}^2 = -2\|\hat W_\ell\|_{\text{HS}}^2 \le 0
\hat J_0 = U_\theta^\dagger \hat H_0 U_\theta

Variational quantum circuits

boosted by

Variational double-bracket algorithms

with M. Robbiati, A. Pasquale,

E. Pedicillo, X. Li, A. Wright,

J. Son, K. U. Giang, S. T. Goh, J. Knörzer, J. Y. Khoo, N. Ng,

S. Carrazza

What else is there?

Linear programming

Matching optimization

Diagonalization

Sorting

QR decomposition

Toda flow

\partial_\ell \hat H_\ell = [[A(\hat H_\ell), B(\hat H_\ell)] , \hat H_\ell]

Double-bracket flow

Runtime-boosting heuristics

Analytical convergence analysis

Group commutator bound

Hasting's conjecture

Relation to other quantum algorithms

Code is available on Github

0

0

0

0

C

Double-bracket quantum algorithms for diagonalization

arxiv:2403.09187 

with J. Son, R. Takagi and N. Ng

\mathcal{E}^{(\mathcal{N},\rho,M)}_{QDP} \coloneqq (\mathcal{E}^{(\mathcal{N},\rho)}_{1/M})^M

Quantum dynamic programming

Material science?

0

0

0

0

C

How to dynamically quantum?

Group commutator

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

Want

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_1 = [\Delta(\hat H),\sigma(\hat H)]
e^{is\Delta(\hat H)}e^{is\hat H}e^{-is\Delta(\hat H)}e^{-is\hat H}= e^{-s^2[\Delta(\hat H),\sigma(\hat H)]} +\hat E^\text{(GC)}

New bound

\|\hat E^\text{(GC)}\| \le 4\|\hat H\|\,\|[\Delta(\hat H),\sigma(\hat H)]\| s^3

Group commutator

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

Want

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_1 = [\Delta(\hat H),\sigma(\hat H)]
e^{is\Delta(\hat H)}e^{is\hat H}e^{-is\Delta(\hat H)}e^{-is\hat H}= e^{- s^2[\Delta(\hat H),\sigma(\hat H)]} +\hat E^\text{(GC)}

How to get                            ?

\hat D_s(\hat H) \approx e^{is\Delta(\hat H)}
\hat C_s(\hat J) = \hat D_{\sqrt{s}}(\hat J)^\dagger \; e^{i\sqrt{s}\hat J}\; \hat D_{\sqrt{s}}(\hat J)\; e^{-i\sqrt{s}\hat J} \approx e^{-s \hat W(\hat J)}
1,
1,
1,
1,
0,
0,
0,
0

Phase flip unitaries

\mu = (
)

N

S

N

S

N

S

N

S

\hat Z
\mathbb 1
\mathbb 1
\otimes
\otimes
\otimes
\otimes
\otimes
\otimes
\otimes
\hat Z
\hat Z
\hat Z
\mathbb 1
\mathbb 1
0,
1,
0,
1,
0,
0,
0,
1
\mu = (
)
1
\otimes
\mathbb 1
\otimes
\mathbb 1
\otimes
\hat Z
\otimes
1
\otimes
\mathbb 1
\otimes
\hat Z
\otimes
\hat Z

N

S

N

S

N

S

Phase flip unitaries

Evolution under dephased generators

\hat H \mapsto \hat H_\ell = \hat U_\ell^\dagger \hat H \hat U_\ell
\partial_\ell \hat H_\ell = [[A(\hat H_\ell),B(\hat H_\ell)], \hat H_\ell]

0

0

0

0

\hat Z_\mu e^{-i s \hat J} \hat Z_\mu = e^{-is \hat Z_\mu \hat J\hat Z_\mu}
\hat D_s(\hat J) \approx \prod_{\mu\in R} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu

We can make it efficient:

\Delta(\hat J)= \frac 1 {\dim (\hat J)} \sum_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu \hat J \hat Z_\mu
R \subseteq \{0,1\}^{\times L}

Use unitarity

and repeat many times

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat D_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat C_s(\hat J) = \left( \hat D_{\sqrt{2s/K}}(\hat J)^\dagger \;e^{i\sqrt{2s/K}\hat J}\;\hat D_{\sqrt{2s/K}}(\hat J)\;e^{-i\sqrt{2s/K}\hat J}\right)^K
\hat V_k = \hat V_{k-1}\hat C_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

1) Dephasing

2) Group commutator

3) Frame shifting

\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]
\hat V_k = \hat C_s(\hat J_{1})\; \hat C_s(\hat J_{2})\ldots \hat C_s(\hat J_{k-1}) \approx e^{-s \hat W_1}\;e^{-s \hat W_2}\ldots e^{-s \hat W_{k-1}}

Version 2023: Double-bracket quantum algorithms for diagonalization

By Marek Gluza

Version 2023: Double-bracket quantum algorithms for diagonalization

  • 200