Double-bracket flow quantum algorithm for diagonalization

Marek Gluza

NTU Singapore

slides.com/marekgluza

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

no qubit overheads

no controlled-unitaries

0

0

0

0

C

0

0

0

0

Simple

=

Easy

Doesn't spark joy :(

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

building useful quantum algorithms

new approach to preparing useful states

building useful variational circuits

tons of fun maths in the appendix

no qubit overheads

no controlled-unitaries

0

0

0

0

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat V^{(\Delta)}_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger e^{i\sqrt{2s}\hat J}\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)e^{-i\sqrt{2s}\hat J}
\hat V_k = \hat V_{k-1}\hat V^\text{(GC)}_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

1) Dephasing

2) Group commutator

3) Frame shifting

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat V^{(\Delta)}_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger e^{i\sqrt{2s}\hat J}\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)e^{-i\sqrt{2s}\hat J}
\hat V_k = \hat V_{k-1}\hat V^\text{(GC)}_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

Why does it work?

What have

condensed-matter theorists

been up to in the 90's? 

BTW: For the next 2 years I will be working on theory support for prof. Rainer Dumke as NTU PPF (super-conducting qubits, tomography zoo, proof-of-principle quantum algorithms...)

Research assistant  "quantum engineer" positions available

(python, mathematica, Qiskit)

\hat H
\hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [\hat \mathcal W_\ell, \hat \mathcal H_\ell]
\hat \mathcal W_\ell = [\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)]
\partial_\ell \|\sigma(\hat \mathcal H_\ell)\|_{\text{HS}}^2 = -2\|\hat \mathcal W_\ell\|_{\text{HS}}^2
\Delta(\hat \mathcal H_\ell)
\sigma(\hat \mathcal H_\ell)

GÅ‚azek-Wilson-Wegner flow

GWW flow equation

Flow duration

GWW flow unitary

Flowed Hamiltonian

Input Hamiltonian

\hat\mathcal U_\ell
\ell

Canonical bracket

GWW flow monotonicity

Restriction to off-diagonal

Restriction to diagonal

as a quantum algorithm

\hat H
\hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [\hat \mathcal W_\ell, \hat \mathcal H_\ell]
\hat \mathcal W_\ell = [\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)]
\Delta(\hat \mathcal H_\ell)
\sigma(\hat \mathcal H_\ell)

GÅ‚azek-Wilson-Wegner flow

GWW flow equation

Flow duration

GWW flow unitary

Flowed Hamiltonian

Input Hamiltonian

\hat\mathcal U_\ell
\ell

Canonical bracket

GWW flow monotonicity

Restriction to off-diagonal

Restriction to diagonal

\hat H
\hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [\hat \mathcal W_\ell, \hat \mathcal H_\ell]
\hat \mathcal W_\ell = [\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)]
\partial_\ell \|\sigma(\hat \mathcal H_\ell)\|_{\text{HS}}^2 = -2\|\hat \mathcal W_\ell\|_{\text{HS}}^2
\Delta(\hat \mathcal H_\ell)
\sigma(\hat \mathcal H_\ell)

GÅ‚azek-Wilson-Wegner flow

GWW flow equation

Flow duration

GWW flow unitary

Flowed Hamiltonian

Input Hamiltonian

\hat\mathcal U_\ell
\ell

Canonical bracket

GWW flow monotonicity

Restriction to off-diagonal

Restriction to diagonal

as a quantum algorithm

\hat \mathcal W_\ell = [\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)]
\partial_\ell \|\sigma(\hat \mathcal H_\ell)\|_{\text{HS}}^2 = -2\|\hat \mathcal W_\ell\|_{\text{HS}}^2 \le 0

GÅ‚azek-Wilson-Wegner flow

GWW flow monotonicity

as a quantum algorithm

What's going on?

Double-bracket flow

Unitary 

Satisfies a generalization of the Heisenberg equation

\hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]
\hat\mathcal U_\ell

GWW is a particular example

\partial_\ell \hat \mathcal H_\ell = [[\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

transformation of 

\hat H
\hat H_s = e^{s \hat W^{(Z)}} \hat H e^{-s \hat W^{(Z)}}
\hat W^{(Z)} = [\Delta^{(Z)}(\hat H), \hat H ],
\partial_s \|\sigma(\hat H_s)\|_{\text{HS}}^2 = -2\langle \hat W^{(Z)},\hat W\rangle_{\text{HS}}
\Delta^{(Z)}(\hat H) \text{ - diagonal}

Variational double-bracket flows

that are diagonalizing

\partial_\ell \|\sigma(\hat \mathcal H_\ell)\|_{\text{HS}}^2 = -2\|\hat \mathcal W_\ell\|_{\text{HS}}^2 \le 0

antihermitian

unitary

\left(i\hat H\right)^\dagger = -i \hat H

How to understand the continuous flow?

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_1 = [\Delta(\hat H),\sigma(\hat H)]
\hat W_k = [\Delta(\hat H_{k-1}),\sigma(\hat H_{k-1})]
\hat H_k = e^{s \hat W_k} \hat H_{k-1} e^{-s \hat W_k}
\hat H_\text{TFIM} = \sum_{i=1}^{L-1}\hat X_i\hat X_{i+1}+\sum_{i=1}^L \hat Z_i

Piece-wise constant discretization

\hat W_k = [\Delta(\hat H_{k-1}),\sigma(\hat H_{k-1})]
\hat H_k = e^{s \hat W_k} \hat H e^{-s \hat W_k}
\text{If we want } U_\ell \text{ then set } s = \ell / N \text{ and } N\rightarrow \infty
\text{{\bf Prop.} This converges point-wise:}
\partial_\ell \hat \mathcal H_\ell = [\hat \mathcal W_\ell, \hat \mathcal H_\ell]
\hat \mathcal W_\ell = [\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)]

Piece-wise constant discretization

How to quantum?

Group commutator

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

Want

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_1 = [\Delta(\hat H),\sigma(\hat H)]
e^{is\Delta(\hat H)}e^{is\hat H}e^{-is\Delta(\hat H)}e^{-is\hat H}= e^{-\frac12 s^2[\Delta(\hat H),\sigma(\hat H)]} +\hat E^\text{(GC)}

New bound

\|\hat E^\text{(GC)}\| \le 4\|\hat H\|\,\|[\Delta(\hat H),\sigma(\hat H)]\| s^3

Group commutator

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

Want

\hat H_1 = e^{s \hat W_1} \hat H e^{-s \hat W_1}
\hat W_1 = [\Delta(\hat H),\sigma(\hat H)]
e^{is\Delta(\hat H)}e^{is\hat H}e^{-is\Delta(\hat H)}e^{-is\hat H}= e^{-\frac12 s^2[\Delta(\hat H),\sigma(\hat H)]} +\hat E^\text{(GC)}

How to get                            ?

\hat V^{(\Delta)}_s(\hat H) \approx e^{is\Delta(\hat H)}
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger e^{i\sqrt{2s}\hat J}\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)e^{-i\sqrt{2s}\hat J} \approx e^{-s \hat W(\hat J)}

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat V^{(\Delta)}_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger e^{i\sqrt{2s}\hat J}\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)e^{-i\sqrt{2s}\hat J}
\hat V_k = \hat V_{k-1}\hat V^\text{(GC)}_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

1) Dephasing

2) Group commutator

3) Frame shifting

\hat H
\hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [\hat \mathcal W_\ell, \hat \mathcal H_\ell]
\hat \mathcal W_\ell = [\Delta(\hat \mathcal H_\ell),\sigma(\hat \mathcal H_\ell)]
\partial_\ell \|\sigma(\hat \mathcal H_\ell)\|_{\text{HS}}^2 = -2\|\sigma(\hat \mathcal W_\ell)\|_{\text{HS}}^2
\Delta(\hat \mathcal H_\ell)
\sigma(\hat \mathcal H_\ell)

GÅ‚azek-Wilson-Wegner flow

GWW flow equation

Flow duration

GWW flow unitary

Flowed Hamiltonian

Input Hamiltonian

\hat\mathcal U_\ell
\ell

Canonical bracket

GWW flow monotonicity

Restriction to off-diagonal

Restriction to diagonal

Dephasing is a unitary mixing channel:

\Delta(\hat \mathcal H_\ell)= \frac 1 D \sum_{\mu\in\{0,1\}} \hat Z_\mu \hat\mathcal H_\ell \hat Z_\mu

as a quantum algorithm

1,
1,
1,
1,
0,
0,
0,
0

What I mean by phase flips

\mu = (
)

N

S

N

S

N

S

N

S

\hat Z
\mathbb 1
\mathbb 1
\otimes
\otimes
\otimes
\otimes
\otimes
\otimes
\otimes
\hat Z
\hat Z
\hat Z
\mathbb 1
\mathbb 1
0,
1,
0,
1,
0,
0,
0,
1

What I mean by phase flips

\mu = (
)
1
\otimes
\mathbb 1
\otimes
\mathbb 1
\otimes
\hat Z
\otimes
1
\otimes
\mathbb 1
\otimes
\hat Z
\otimes
\hat Z

N

S

N

S

N

S

Evolution under dephased generators

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

e^{-is/D \sum_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu \hat J\hat Z_\mu} \approx \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^{(\Delta)}_s(\hat J) \approx \prod_{\mu\in R} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu

Can we make it efficient?

\Delta(\hat \mathcal H_\ell)= \frac 1 D \sum_{\mu\in\{0,1\}} \hat Z_\mu \hat\mathcal H_\ell \hat Z_\mu
R \subseteq \{0,1\}^{\times L}

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat V^{(\Delta)}_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger e^{i\sqrt{2s}\hat J}\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)e^{-i\sqrt{2s}\hat J}
\hat V_k = \hat V_{k-1}\hat V^\text{(GC)}_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

1) Dephasing

2) Group commutator

3) Frame shifting

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat V^{(\Delta)}_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger e^{i\sqrt{2s}\hat J}\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)e^{-i\sqrt{2s}\hat J}
\hat V_k = \hat V_{k-1}\hat V^\text{(GC)}_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

1) Dephasing

2) Group commutator

3) Frame shifting

How well does it work?

Variational flow example 

Notice the steady increase of diagonal dominance.

Variational vs. GWW flow

Notice that degeneracies limit GWW diagonalization but variational brackets can lift them.

GWW for 9 qubits

Notice the spectrum is almost converged.

GWW for 9 qubits

Notice that some of them are essentially eigenstates!

Runtime

- are you running the full scheme or heuristics?

\text{{\bf Prop.} The prescription converges to GWW } \\ \|\hat V_N -\hat \mathcal U_\ell\|\le O\left(e^{16 \|\hat H\|^2\ell} \sqrt{\frac \ell N}\right)

- number of queries assuming worst-case

\mathcal N(N) \sim 2^{N L}

Runtime

- are you running heuristics?

1) Not 

s = \ell / N
s_1,\ldots, s_N

but optimize durations

2) It's not necessary to Hamiltonian simulate

e^{-s\hat W}

3) It's possible to Hamiltonian simulate

\hat V^\text{(pGGW)} = e^{-s_1 \hat W_1}\ldots e^{-s_5 \hat W_5}

4) Use approximate dephasing

5) Use variational brackets

Each of these reduces the runtime

\mathcal N(N) \sim poly(N) exp(L)
\mathcal N(N) \sim poly(N,L)

How does it work again?

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

0

0

0

0

\hat V^{(\Delta)}_s(\hat J) = \prod_{\mu\in\{0,1\}^{\times L}} \hat Z_\mu e^{-i s \hat J/D} \hat Z_\mu
\hat V^\text{(GC)}_s(\hat J) = \hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)^\dagger\; e^{i\sqrt{2s}\hat J}\;\hat V^{(\Delta)}_{\sqrt{2s}}(\hat J)\;e^{-i\sqrt{2s}\hat J}
\hat V_k = \hat V_{k-1}\hat V^\text{(GC)}_s(\hat J_{k-1})
\hat J_{k-1} = \hat V_{k-1}^\dagger \hat H \hat V_{k-1}

1) Dephasing

2) Group commutator

3) Frame shifting

What else is there?

Linear programming

Matching optimization

Diagonalization

Sorting

QR decomposition

Toda flow

Are we done?

Short weather forecast

Heat waves destroy forests.

Heat waves destroy quantum computations.

0

0

0

0

C

From where I come from, I can tell you:

 Winter can be very beautiful!

But, I can also tell you: You get sad from the darkness, annoyed from the moisture and restricted by the cold.

Quantum winter

Quantum computers

Useful tasks?

If for
No
Then
BUT!

Quantum winter

Quantum computers

Useful tasks!

If for
No
Then

Material science?

0

0

0

0

C

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Ask me anytime:

 

[4,8]

[1]

[3]

[2]

[5]

[13]

[6]

[9]

[11,16]

[12]

[7, 14, 15, 17]

[10]

0

0

0

0

C

Fidelity witnesses

Tomography optical lattices

Tomography phonons

Proving statistical mechanics

Quantum simulating DSF

Holography in tensor networks

PEPS contraction average #P-hard

Quantum field machine

MBL l-bits

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

My background

 

0

0

0

0

C

[4,8]

[1]

[3]

[2]

[5]

[13]

[6]

[9]

[11,16]

[12]

[7, 14, 15, 17]

[10]

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a laptop?

How to compute it on a quantum computer?

Hamiltonian simulation

|\psi(t)\rangle = e^{-it \hat H}|\psi(0)\rangle

How to compute it on a quantum computer?

Use quantum algorithms 'Hamiltonian simulation'

Trotter-Suzuki

Linear combination of unitaries

Qubitization

Randomized compiler

Hamiltonian simulation

Gaussian quantum simulators

Trotter-Suzuki decomposition

\|\hat E\| = \|e^{-it(\hat H_X +\hat H_Z)} - \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N\|
\le \frac{t^2}N\|[\hat H_X,\hat H_Z]\|

Why does it work?

BCH formula

e^{-it( \hat H_X +\hat H_Z)}=e^{-it\hat H_X }e^{-it\hat H_Z}e^{-i\frac {t^2}2[\hat H_X ,\hat H_Z]}\ldots
\|\mathbb 1 - e^{-i\frac {t^2}2[\hat H_X ,\hat H_Z]}\| \le \frac {t^2}2 \|[ \hat H_X ,\hat H_Z]\|

Conclusion: For short evolution time we're happy

How to implement Trotter-Suzuki?

e^{-it\hat H_X}=\prod_{i=1}^{L-1}e^{-it X_iX_{i+1} }
g_X(i) = e^{-itX_i X_{i+1}}
g_Z(i) = e^{-itZ_i }

Use Solovay-Kitaev algorithm to compile these gates but usually they are the primitive gates

(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z})^N{|0\rangle}^{\otimes L}

0

0

0

0

Hamiltonian simulation

0

0

0

0

0

0

0

0

C

Most sophisticated theoretical methods use

controlled-unitary operations

Exercise: Local error bound

Q_x = e^{i(1-x)A}e^{i(1-x)B}e^{ix(A+B)}
Q_1 = e^{i(A+B)}
Q_0 = e^{i A}e^{i B}
\partial_x Q_x = e^{i(1-x)A}\left(-A-B+ A_B+B\right)e^{i(1-x)B} e^{ix(A+B)}
A_B = e^{i(1-x)B}A e^{-i(1-x)B} = A + i e^{i\xi_x B}[A,B] e^{-i\xi_x B}
\|Q_0-Q_1\| =\| \int_0^1 dx \partial_x Q_x\| = \|[A,B]\|

Exercise: Non-commutative identity

X^m - Y^m = \sum_{j=0}^{m-1}X^{m-1-j}(X-Y)Y^j
\le \sum_{j=0}^{N-1}\|e^{-i (N-1-j)\frac tN \hat H_X}(e^{-i\frac tN \hat H_X}-e^{-i\frac tN \hat H_Z})e^{-ij\frac tN \hat H_Z}\|
\|e^{-it(\hat H_X +\hat H_Z)} - \left(e^{-i\frac tN \hat H_X}e^{-i\frac tN \hat H_Z}\right)^N\|
\le \sum_{j=0}^{N-1}\|e^{-i \frac tN \hat H_X}-e^{-i\frac tN \hat H_Z}\| \le \frac{t^2}N \|[H_X,H_Z]\|

cf.:

x^m -y ^m = (x-y)\sum_{j=0}^{m-1}x^{m-1-j}y^j

Application to physics:

Version 2022: Slides: Double-bracket flow quantum algorithm for diagonalization

By Marek Gluza

Version 2022: Slides: Double-bracket flow quantum algorithm for diagonalization

  • 332