Marek Gluza

NTU Singapore

Dynamical structure factor of Rydberg arrays via quantum simulation

M. Goihl, J. Haferkamp,

J. Bermejo-Vega, J. Eisert

L. Baez

How to get this

Dynamical structure factor

from this

Rydberg

array

Our paper

Laura Baez:

DSF is key for quantum magnetism

Quantum simulators for quantum magnetism need to evaluate DSF!

How will it look for Rydberg atoms?

M. Goihl, J. Haferkamp, J. Bermejo-Vega, J. Eisert

What is DSF?

Frequency

 

Momentum

Excitation

\{

No excitation

=

energy gap

Two-particle continuum

What is DSF?

\langle \Psi| \sigma^x_j |\Psi\rangle = \frac 12 \langle \psi|\sigma^x_j |\psi\rangle +G^\text{ret}(i,j,t) + \langle \psi|\sigma_j^x \sigma^x_i(t)\sigma^x_j|\psi\rangle
G^\text{ret}(i,j,t) = \langle \psi| \sigma^x_i(t)\sigma_j^x(0)+\sigma_j^x(0)\sigma^x_i(t)|\psi\rangle
S^{xx}(q,\omega) = \frac 1\pi (1 + (1+e^{\omega/ T})^{-1}) \, \text{Imag}[ G^\text{ret}(q,\omega)]

Knap, Demler, et al., https://arxiv.org/abs/1307.0006

Probing real-space and time resolved correlation functions with many-body Ramsey interferometry

How to measure DSF?

R_i(\pi/4) = \frac 1{\sqrt 2}( 1 - i \sigma^x_i)
|\Psi\rangle = U(t) R_i(\pi/4) |\psi\rangle
U(t) = e^{-it H}
\langle \Psi| \sigma^x_j |\Psi\rangle = \frac 12 \langle \psi| (1+i\sigma^x_i) U(t)^\dagger \sigma^x_j U(t) (1-i\sigma^x_i) |\psi\rangle

you can measure this if not 0 by symmetry

you can measure this if not 0 by symmetry

\langle \Psi| \sigma^x_j |\Psi\rangle = \frac 12 \langle \psi|\sigma^x_j |\psi\rangle +G^\text{ret}(i,j,t) + \langle \psi|\sigma_j^x \sigma^x_i(t)\sigma^x_j|\psi\rangle

How to measure DSF?

you can measure this if not 0 by symmetry

you can measure this if not 0 by symmetry

\langle \Psi| \sigma^x_j |\Psi\rangle = \frac 12 \langle \psi|\sigma^x_j |\psi\rangle +G^\text{ret}(i,j,t) + \langle \psi|\sigma_j^x \sigma^x_i(t)\sigma^x_j|\psi\rangle
G^\text{ret}(i,j,t) = \langle \psi| \sigma^x_i(t)\sigma_j^x(0)+\sigma_j^x(0)\sigma^x_i(t)|\psi\rangle
S^{xx}(q,\omega) = \frac 1\pi (1 + (1+e^{\omega/ T})^{-1}) \, \text{Imag}[ G^\text{ret}(q,\omega)]

Fourier transform in space and time

How to measure DSF?

\langle \Psi| \sigma^x_j |\Psi\rangle = \frac 12 \langle \psi|\sigma^x_j |\psi\rangle +G^\text{ret}(i,j,t) + \langle \psi|\sigma_j^x \sigma^x_i(t)\sigma^x_j|\psi\rangle
S^{xx}(q,\omega) = \frac 1\pi (1 + (1+e^{\omega/ T})^{-1}) \, \text{Imag}[ G^\text{ret}(q,\omega)]

Fourier transform in space and time

E.g., If want 10% statistical error bar and 60 points (i-j,t) for Fourier transform then with 1 min preparation then it will take about 100 hours to run the experiment

If 1 second preparation then 100 minutes etc.

 

How well will it work?

H^\text{TFIM}(J,B) = J\sum_{i,j} |i-j|^{-\alpha} \sigma^x_i \sigma^x_j + B\sum_i \sigma^z_i

How well will it work?

H^\text{TFIM}(J,B) = J\sum_{i,j} |i-j|^{-\alpha} \sigma^x_i \sigma^x_j + B\sum_i \sigma^z_i

Imperfections:

finite-size effects

finite quench duration

finite Fourier transform

 

Imprefection if state not the ground-state but finite-time adiabatic preparation

Correlation deviation continuously decreased and so DSF converges (quantitatively) fairly soon

(qualitatively: ok!)

H^\text{TFIM}(J,B) = J \sum_{i} \sigma^x_i \sigma^x_{i+1} + B\sum_i \sigma^z_i
\langle \text{Experimental troubles} \rangle

Imprefection if lattice is breathing

Correlation deviation is persistent and so DSF also deviates (quantitatively)

(qualitatively: ok!)

J = J_0 (1 + A \cos \Omega t)
H^\text{TFIM}(J,B) = J \sum_{i} \sigma^x_i \sigma^x_{i+1} + B\sum_i \sigma^z_i
\langle \text{Experimental troubles} \rangle

Complexity theory

raison d'être quantum simulation: compute what is hard to compute

it would be nice if the quantum simulated outcomes are useful

M. Goihl, J. Haferkamp,

J. Bermejo-Vega, J. Eisert

L. Baez

P: Runs easily

BPP: Often runs easily

BQP: Often quantums easily

NP: Optimizes easily

QMA

P: Runs easily

BPP: Often runs easily

BQP: Often quantums easily

NP: Optimizes easily

"hardness( DSF approximation )"

=

"run( quantum computation )"

What else is there?

Material science?

0

0

0

0

C

Diagonalization quantum algorithm

DSF of Rydberg arrays

Phonon tomography

Optical lattice tomography

New quantum algorithm for diagonalization

\hat H \mapsto \hat \mathcal H_\ell = \hat \mathcal U_\ell^\dagger \hat H \hat\mathcal U_\ell
\partial_\ell \hat \mathcal H_\ell = [[A(\hat \mathcal H_\ell),B(\hat \mathcal H_\ell)], \hat \mathcal H_\ell]

no qubit overheads

no controlled-unitaries

0

0

0

0

C

0

0

0

0

Simple

=

Easy

Doesn't spark joy :(
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Ask me anytime:

 

[11,16]

[7, 14, 15]

0

0

0

0

C

Fidelity witnesses

Tomography optical lattices

Tomography phonons

Proving statistical mechanics

Quantum simulating DSF

Holography in tensor networks

PEPS contraction average #P-hard

Quantum field machine

MBL l-bits

(click links at slides.com/marekgluza

Dynamical structure factor of Rydberg arrays

By Marek Gluza

Dynamical structure factor of Rydberg arrays

  • 382