Tomography slides for Jörg

Marek Gluza

NTU Singapore

slides.com/marekgluza

Gaussian quantum simulators

How?

Ultra-cold 1d gases

Inside: atoms

Outside:  wavepackets

hydrodynamics

 

Energy of phonons

E
E
E
E
\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll

Tomonaga-Luttinger liquid

Interferometry measures velocities

van Nieuwkerk, Schmiedmayer, Essler, arXiv:1806.02626

Schumm, Schmiedmayer, Kruger, et al., arXiv:quant-ph/0507047

\partial_z\hat \varphi(z) \approx\frac{\hat \varphi(z)-\hat \varphi(z+\Delta z)}{\Delta z}
\Delta z

Quantum field refrigerators in the TLL model:

System

Piston

Bath

Bath with excitations

System cooled down

 Breaking of the Huygens-Fresnel principle

 in the inhomogenous TLL model:

Why?

Why develop continuous field

quantum simulators?

  • Representation theory: Quantum information?
  • Continuum limits: BQP and QMA or more?
  • Are nanowires computationally hard to simulate?

What do we know is difficult?

SM

Fundamental

Universal

Effective

Why develop continuous field

quantum simulators?

  • Representation theory: Quantum information?
  • Continuum limits: BQP and QMA or more?
  • Are nanowires computationally hard to simulate?

What do we know is difficult?

SM

Fundamental

Universal

Effective

Non-thermal

steady states

Sine-Gordon

thermal states

Atomtronics

Generalized hydrodynamics

Recurrences

Some highlights:

Interferometry measures velocities

van Nieuwkerk, Schmiedmayer, Essler, arXiv:1806.02626

Schumm, Schmiedmayer, Kruger, et al., arXiv:quant-ph/0507047

\partial_z\hat \varphi(z) \approx\frac{\hat \varphi(z)-\hat \varphi(z+\Delta z)}{\Delta z}
\partial_z\hat \varphi(z) \approx\frac{\Delta\hat\varphi(z)}{\Delta z}
\Delta z

Tomography

Tomography for phonons

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Tomography for phonons

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \phi_k^2(0)\rangle \\ \quad\quad\quad\quad\quad+\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

What are eigenmodes?

\hat H_\text{TLL} = \int \text{d}z\left[ \frac{\hbar^2n_{GP}}{2m}\partial_z\hat\varphi^2+g\delta\hat\varrho^2\right]
\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\hat \phi_k = \int_0^L dz \cos(\pi k z/L)\hat \varphi(z)
\int_0^L dz \cos(\pi k z/L)\cos(\pi k'z/L) = \delta_{k,k'}

Transmutation

\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \hat\phi_k^2(0)\rangle +\sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
\langle\hat \phi_k^2(t)\rangle= \langle \hat\phi_k^2(0)\rangle
\langle\hat \phi_k^2(t)\rangle= \langle \delta\hat \rho_k^2(0)\rangle
t=0:
t=\frac{\pi}{2\omega_k}:
\delta \hat\rho
\langle\hat \phi^2(t)\rangle
\langle\delta\hat \rho^2(0)\rangle =0?
\langle \hat \phi^2(0)\rangle
\hat \phi

Tomography

A_{1,2}= \sin^2(\omega_k t_1 )
A_{1,1}= \cos^2(\omega_k t_1)
\langle\hat \phi_k^2(t)\rangle= \cos^2(\omega_k t) \langle \hat\phi_k^2(0)\rangle+ \sin^2(\omega_k t) \langle \delta\hat \rho_k^2(0)\rangle
A_{3,2}= \sin^2(\omega_k t_3 )
A_{3,1}= \cos^2(\omega_k t_3)
A_{2,2}= \sin^2(\omega_k t_2 )
A_{2,1}= \cos^2(\omega_k t_2)
A \begin{pmatrix} \langle \hat\phi_k^2(0)\rangle \\\langle \delta\hat \rho_k^2(0)\rangle \end{pmatrix} =\begin{pmatrix} \langle \hat\phi_k^2(t_1)\rangle \\\langle \hat\phi_k^2(t_2)\rangle \\\langle \hat\phi_k^2(t_3)\rangle \end{pmatrix}
\|Aq - d\| = \text{min}

(This formalism: Tomography for many modes)

Tomography Klein-Gordon thermal state after quench

\hat H_\text{KG}=\hat H_\text{TLL}+J\int \mathrm{d}z \,n_{GP} \hat \varphi^2

Extracting physical properties

Extracting physical properties

Extracting physical properties

Tomography for optical lattices

What about quantum correlations?

Tomography Klein-Gordon thermal state after quench

\hat H_\text{KG}=\hat H_\text{TLL}+J\int \mathrm{d}z \,n_{GP} \hat \varphi^2

Data by M. Tajik, J. Schmiedmayer

Towards entanglement

Issue #1: Gibbs phenomenon

10 eigen-modes:

20 eigen-modes:

Issue #2: Zero mode missing in tomography

\hat H_\text{TLL} = \sum_{k>0} \frac {\hbar \omega_k}2 (\phi_k^2+\delta\hat\rho_k^2) + g\hat\rho_0^2
\langle\hat \phi_0^2(t)\rangle= \langle\hat \phi_0^2(0)\rangle +g^2t^2 \langle \delta\hat \rho_0^2(0)\rangle

Towards entanglement

Role of the zero mode in entanglement

Squeezing  criterion needs:

\hat\phi_L+ \hat\phi_R = \hat\phi_0 = \int \mathrm{d}z \hat \varphi(z)
\hat\phi_L = \int_L \mathrm{d}z \hat \varphi(z)
\hat\phi_R = \int_R \mathrm{d}z \hat \varphi(z)
\hat\phi_L- \hat\phi_R \approx \hat\phi_1 = \int \mathrm{d}z \hat \varphi(z) \cos(2\pi z)

Not available in tomography

What?

What about correlations?

z
z'
\langle \Delta\hat\varphi(z)\Delta\hat\varphi(z')\rangle/ \Delta z^2 \approx \langle \partial_z\hat\varphi(z)\partial_z\hat\varphi(z')\rangle

Velocity correlations:

Velocity correlations

z
z'
C(z,z') \approx \frac{\langle \Delta\hat\varphi(z)\Delta\hat\varphi(z')\rangle}{ \Delta z^2 }
\langle \Delta\hat\varphi(z)\Delta\hat\varphi(z')\rangle/ \Delta z^2 <0

Anti-correlation:

Left moves opposite to right

z
z'

And with anti-correlation:

C(z,z') \approx \frac{\langle \Delta\hat\varphi(z)\Delta\hat\varphi(z')\rangle}{ \Delta z^2 }
C(z,z',t) \approx \frac{\langle \Delta\hat\varphi(z,t)\Delta\hat\varphi(z',t)\rangle}{ \Delta z^2 }

New data by M. Tajik, J. Schmiedmayer

Time step: 1ms

Simplicity arising from a quench:

Data by M. Tajik, J. Schmiedmayer

Mechanisms for the emergence of Gaussian correlations

Marek Gluza

presenting based on collaboration with

T. Schweigler, M. Tajik, J. Sabino, F. Cataldini, S-C. Ji, F. Moller, B. Rauer, J. Schmiedmayer, J. Eisert, S. Sotiriadis

NTU Singapore

Initial non-Gaussianity decays

Why does it decay?

The system is isolated

Initial non-Gaussianity decays

Why does it revive?

The system is isolated

Then it revives

Phase fluctuations

Phase derivative correlations

increase with distance

decay but sizeable

Effective light cone

not dispersive

Tomonaga-Luttinger liquid

Inhomogeneous

Breaking of Huygens-Fresnel principle in inhomogeneous Tomonaga-Luttinger liquids

Huygens-Fresnel principle

\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)

Tomonaga-Luttinger liquid

Tomonaga-Luttinger liquid

Cold atoms as

                           an inhomogeneous

\hat H_\text{TLL} = \int_0^L \text{d}x\biggl( \frac{\hbar^2n_{GP}}{2m}\partial_x\hat\varphi^2+g\delta\hat\varrho^2\biggr)
\delta\varrho
\partial_z\varphi
\partial_z\varphi
\ll
\delta\varrho
\ll
\hat H_\text{TLL} = \int_{0}^{L} \mathrm{d}x\,v_\text{S} \biggl( K \partial_{x} \hat{\phi}(x)^2 + {K}^{-1}\partial_{t} \hat{\phi}(x)^2 \biggr)
\hat H = \int_{0}^{L} \mathrm{d}x\,v(x) \biggl( {K(x)}^{-1} \hat\pi (x)^2 + K(x) \partial_{x} \hat{\phi}(x)^2 \biggr)
n_\text{GP}(x)
{K(x)}
v(x)

Huygens-Fresnel principle

Huygens-Fresnel principle broken

\partial_{t}^{2} \hat{\phi} = 2 v(x) v'(x) \partial_{x} \hat{\phi} + v(x)^2 \partial^2_{x} \hat{\phi}
\partial_{t}^{2} \hat{\phi} = v(x)v'(x) \partial_{x} \hat{\phi} + v(x)^2\partial^2_{x} \hat{\phi}
\mapsto

The factor 2 is the source of leakage into the light-cone

Breaking of Huygens-Fresnel principle in inhomogeneous Tomonaga-Luttinger liquids

Marek Gluza

 Spyros Sotiriadis

Per Moosavi

\partial_{t}^{2} \hat{\phi} = 2 v(x) v'(x) \partial_{x} \hat{\phi} + v(x)^2 \partial^2_{x} \hat{\phi}
\partial_{t}^{2} \hat{\phi} = v(x)v'(x) \partial_{x} \hat{\phi} + v(x)^2\partial^2_{x} \hat{\phi}
\mapsto

NTU Singapore

Tomography overview

By Marek Gluza

Tomography overview

  • 338