Algorithms for the network alignment problem

Emanuele Natale

Journées Julia et Optimisation

Oct 4 – 6, 2023, CNAM Paris

Centre Inria d'Université Côte d'Azur

COATI & Julia

COATI: Combinatorics, Optimization, and Algorithms for Telecommunications
 

Contributions to  graph algorithms libraries

github.com/worlddynamics

Me & Julia:

  • sponsoring it at INRIA Université Côte d'Azur since 2019
  • developing Integrated Assessment Models, use in ML and graph algo.s

This talk: Network Alignment in Julia(?)

Theoretical overview of network alignment algorithms

Work In Progress: implement them in Julia

FAQ and GOAT
already in GraphsOptim.jl
(A. Rossi)

Graph Isomorphism

Find correspondence between nodes of two graphs so that they look the same:

Given \(G_A=(V_A,E_A)\) and \(G_B=(V_B,E_B)\), we want a matching \(m:V_A\rightarrow V_B\) such that

\[(u,v)\in E_A \iff (m(u),m(v))\in E_B\]

Quasi-polynomial time \(2^{\operatorname{poly}\log n}\) (Babai '15&'17)

Find correspondence between nodes of two graphs so that they look the same:

Generalizing Graph Isomorphism

Induced Subgraph Isomorphism: \(|V_A|\leq |V_B|\)
(E.g. max clique, max ind. set \(\implies\) NP-complete)

Graph Edit Distance: find best set of edit operations \(e_1,...,e_k\) (edge deletions, insertions...) such that the graph are isomorphic, with cost \(\sum_{i=1}^kc(e_i)\)

The network alignment problem

  • \(A\) and \(B\) adjacency matrices of two graphs 
  • \(P\) permutation matrix 

\[P^* = \arg\min_P\|A-PBP^T\|_F^2\]

Another way to formalize it:

Example: [Frigo et al. 2021] aligns  brain atlases via a generalized Weisfeiler-Lehman embedding

Find correspondence between nodes of two graphs so that they look as similar as possible

Many ways to relax: n°1

  • \(\mathcal P\) permutation matrices
  • \(\mathcal D\) doubly stoch. matrices: \(P\mathbf 1=P^T\mathbf 1=\mathbf 1\)

\(\mathcal P\subset \mathcal D\)

\(\arg\min_{P\in \mathcal P}\|A-PBP^T\|_F^2\)

\prod_{\mathcal P}\arg\min_{P\in \mathcal D}\|A-PBP^T\|_F^2

Frank–Wolfe algorithm

Initialization: Let \(k \leftarrow 0\), and let \(\mathbf{x}_0 \!\) be any point in \(\mathcal{D}\).
Step 1 - Find \(\mathbf{s}_k\) solving:
Minimize \(\mathbf{s}^T \nabla f(\mathbf{x}_k)\) subject to \(\mathbf{s} \in \mathcal{D}\)

Step 2 - Find \(\alpha\in [0,1]\) that minimizes \(f(\mathbf{x}_k+\alpha(\mathbf{s}_k -\mathbf{x}_k))\) .

Step 3 - Update \(\mathbf{x}_{k+1}\leftarrow \mathbf{x}_k+\alpha(\mathbf{s}_k-\mathbf{x}_k)\), \(k \leftarrow k+1\) and go to Step 1.

Iteratively minimize the linear approximation of the problem given by the first-order Taylor approximation of \(f\) around \(\mathbf{x}_k \!\) constrained to stay within \(\mathcal{D}\)

Many ways to relax: n°2

\(\arg\min_{P\in \mathcal D}\|A-PBP^T\|_F^2 \) too far

from \(\arg\min_{P\in \mathcal P}\|A-PBP^T\|_F^2\) for \(\prod_{\mathcal P}\) to succeed

Fundamental trick: \(\|M\|_F^2=\operatorname{tr}(M^TM)=\langle M,M\rangle \) where \(\langle A,B \rangle = \sum_{i,j}A_{i,j}B_{i,j}\) is the (Frobenius) dot product

\(A\) adjacency matrix, \(D_A\) degree matrices, \(L_A=D_A-A\) graph Laplacian, then

\|A-PBP^T\|_F^2=\|AP-PB\|\\ =\|(D_A-L_A)P-P(D_B-L_B)\|= ...\\ =-\|D_AP-PD_B\|+\operatorname{tr}(L_A^2)+\operatorname{tr}(L_B^2)-2\operatorname{tr}(P^TL_A^TPL_B)

\(\operatorname{tr}(P^TL_A^TPL_B)\) Kronecker product of Laplacians \(\implies\) positive semidefinite \(\implies\) convex

The PATH algorithm [Zaslavskiy et al. 2009]

  • \(F_0(P)=\)\(\|AP-PB\|_F^2\) convex
  • \(F_1(P)=-\|D_AP-PD_B\|-2\operatorname{tr}(P^TL_A^TPL_B)\) concave
  • \(F_\lambda(P)=(1-\lambda) F_0(P) + \lambda F_1(P)\)

PATH algorithm:

\(P_0= \arg\min F_0\) by FW

For \(i=1,...,n\)

    \(P_{\frac in} = \arg \min F_{\frac in}\) by FW

        starting from \(P_{\frac{i-1}n}\)

Output \(P_1\)

Many ways to relax: n°3

\(\|A-PBP^T\|_F^2 = \langle A-PBP^T, A-PBP^T\rangle \)

\(=\langle A,A \rangle + \langle B,B \rangle - 2\langle AP,PB\rangle\)

\(\Lambda : \Lambda_{i,j}\in [0,1]\), \(B\sim \operatorname{Bernoulli}(\Lambda)\)
\(A\) \(\rho\)-correlated to \(B\) iff \(A\sim \operatorname{Bernoulli}((1-\rho)\Lambda+\rho B)\)

Theorem. [Lyzinski et al. 2016].
\(A,B\) \(\rho\)-correlated with \(\Lambda_{i,j}\in (\alpha,1-\alpha)\) for some \(\alpha\in (0,\frac 12)\). \(A'=\tilde PA\tilde P^T\) for arbitrary perm. \(\tilde P\).

  • If \(\rho<1\) then a.s. \(\tilde P\neq \arg\min_{P\in \mathcal D} \|A'P-PB\|_F^2\)
  • If \((1-\alpha)(1-\rho)<\frac 12\) then a.s. \(\tilde P = \arg\max_{P\in \mathcal D}\langle A'P,PB\rangle\)

FAQ (Fast Approximate Quadratic) Algorithm

[Vogelstein et al. 2015]

Compute \(\prod_{\mathcal P}\arg\max_{P\in \mathcal D}f(P)  \) with \(f(P)=\langle AP,PB\rangle\): 

\(P_0 = \frac 1n \mathbf 1\mathbf 1^T\)

Iterate Frank-Wolfe \(i=1,...,k\):

    \(\nabla f(P_i) = AP_iB^T+A^TP_iB\)
    \(Q_{i}=\arg\max_{Q\in \mathcal D}\langle Q,\nabla f_i\rangle \) via Hungarian algorithm
    \(\alpha = \arg\max_\alpha f(\alpha Q_{i}+(1-\alpha)Q_i)\)
    \(P_{i+1}=\alpha P_i + (1-\alpha)Q_i\)
Output \(\arg\max \langle P, Q_k\rangle\) via Hungarian algorithm

Approximate Optimal Transport

[Cuturi 2013]

\(\arg\max_P\langle P, C\rangle\)

\(\arg\max_P\big(\langle P, C\rangle - \epsilon H(P)\) with \(\sum_{i,j}P_{i,j}\log\frac 1{P_{i,j}}\big)\)

\(\epsilon\rightarrow 0\)

pushes towards uniform \(P\)

Writing down the Lagrangian with \(P\mathbf 1 = P^T \mathbf 1 = \mathbf 1\) we get

\(P =D_r \exp.(\frac 1\epsilon C) D_c\)
with \(D_r,D_c\) making it doubly stochastic

Theorem [see Peyré, Cuturi 2020]: If \(C\geq 0\), unique \(D_r,D_c\) up to scalars, given by Sinkhorn algorithm

The Sinkhorn Algorithm

Difficult to analyze!

[Altschuler et al. 2017]: A refined Sinkhorn computes \(\tilde P\) s.t. 

\(\langle \tilde P, C \rangle \geq \max_P\langle P, C\rangle -\epsilon\)

in \(\mathcal O(\frac{\|C\|_\infty^3 }{\epsilon^{3}}n^2\log n)\)

Implementations in OptimalTransport.jl

(Naive) Sinkhorn Algorithm.

Input: \(C\geq 0, \epsilon > 0\)

\(M = \exp.(\frac 1\epsilon C)\)

for \(i\in \{1,...,k\}\):

    \(r = M\mathbf 1\)

    \( M \leftarrow r^T M\)
    \( c = M^T \mathbf 1\)

    \(M \leftarrow M c\)

Output \(M\)

GOAT: Graph Matching via Optimal Transport

[Saad-Eldin et al. 2021]

Compute \(\prod_{\mathcal P}\arg\max_{P\in \mathcal D}f(P)  \) with \(f(P)=\langle AP,PB\rangle\): 

\(P_0 = \frac 1n \mathbf 1\mathbf 1^T\)

Iterate Frank-Wolfe \(i=1,...,k\):

    \(\nabla f(P_i) = AP_iB^T+A^TP_iB\)
    \(Q_{i}=\arg\max_{Q\in \mathcal D}\langle Q,\nabla f_i\rangle +\epsilon H(Q)\) via Sinkhorn
    \(\alpha = \arg\max_\alpha f(\alpha Q_{i}+(1-\alpha)Q_i)\)
    \(P_{i+1}=\alpha P_i + (1-\alpha)Q_i\)
Output \(\arg\max \langle P, Q_k\rangle\) via Hungarian algorithm

  • Replacing the last Hungarian with Sinkhorn?
  • Parallel Network Alignment algorithms?
  • Wanna help? Reach out!

Thank You

Journées Julia et Optimisation CNAM 2023

By Emanuele Natale

Journées Julia et Optimisation CNAM 2023

  • 166