FAST AND ACCURATE OPTIMIZATION ON THE ORTHOGONAL MANIFOLD WITHOUT RETRACTION

Pierre Ablin

CNRS - Université paris-dauphine

Reference:

Pierre Ablin and Gabriel Peyré.

Fast and accurate optimization on the orthogonal manifold without retraction.  AISTATS 2022

https://arxiv.org/abs/2102.07432

Joint work with: Gabriel Peyré, Pierre-antoine Absil, Bin Gao, SImon Vary

Orthogonal weights in a neural network ?

Orthogonal matrices

A matrix \(W \in\mathbb{R}^{p\times p}\) is orthogonal if 

$$W^\top W = I_p$$

applications in Neural networks

 

  • Adversarial robustness
  • Stability
  • To build invertible networks

Training neural networks with orthogonal weights

Training problem

Neural network \(\phi_{\theta}: x\mapsto y\) with parameters \(\theta\). Dataset \(x_1, \dots, x_n\).

 

Find parameters by empirical risk minimization:

 

$$\min_{\theta}f(\theta) = \frac1n\sum_{i=1}^n\ell_i(\phi_{\theta}(x_i))$$

 

How to do this with orthogonal weights?

Loss function

Orthogonal manifold

\( \mathcal{O}_p = \{W\in\mathbb{R}^{p\times p}|\enspace W^\top W =I_p\}\) is a Riemannian manifold:

Around each point, it looks like a linear vector space.

Problem:

$$\min_{W\in\mathcal{O}_p}f(W)$$

 

"Classical" approach:

\mathcal{O}_p

Extend Euclidean algorithms to the Riemannian setting (gradient descent, stochastic gradient descent...)

Absil, P-A., Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.

Tangent space

\mathcal{O}_p
W

\(T_W\) : tangent space at \(W\).

Set of all tangent vectors at \(W\).

T_W

Simple set for \(\mathcal{O}_p\):

$$T_W = \{Z\in\mathbb{R}^{p\times p}|\enspace ZW^\top + WZ^\top = 0\}$$

$$T_W = \mathrm{Skew}_p W$$

Set of skew-symmetric matrices

Riemannian gradient

\mathcal{O}_p
W
-\nabla f(W)
T_W

Tangent space: 

$$T_W = \{Z\in\mathbb{R}^{p\times p}|\enspace ZW^\top + WZ^\top = 0\}$$

$$T_W = \mathrm{Skew}_p W$$

Riemannian gradient:

$$\mathrm{grad}f(W) = \mathrm{proj}_{T_W}(\nabla f(W)) \in T_W$$

-\mathrm{grad} f(W)

On \(\mathcal{O}_p\):

$$\mathrm{grad}f(W) = \mathrm{Skew}(\nabla f(W)W^\top) W$$

Projection on the skew-symmetric matrices: \(\mathrm{skew}(M) = \frac12(M - M^\top)\)

Knowing \(\nabla f(W)\), only need 2 matrix-matrix multiplications to compute it : cheap !

Moving on the manifold

\mathcal{O}_p
W
-\nabla f(W)
T_W
-\mathrm{grad} f(W)

 We cannot go in a straight line:

$$W^{t+1} = W^t - \eta \mathrm{grad}f(W^t)$$

Goes out of \(\mathcal{O}_p\) :(

Retractions: examples

On \(\mathcal{O}_p\), \(T_W = \mathrm{Skew}_pW\), hence for \(Z\in T_W\) we can write

$$Z = AW,\enspace A^\top = -A$$

Classical retractions :

  • Exponential:        \(\mathcal{R}(W, AW) =\exp(A)W\)
  • Cayley:                 \(\mathcal{R}(W, AW) =(I -\frac A2)^{-1}(I + \frac A2)W\)
  • Projection:          \(\mathcal{R}(W, AW) = \mathrm{Proj}_{\mathcal{O_p}}(W + AW)\)
\mathcal{O}_p
W
T_W
Z
\mathcal{R}(W, Z)

Riemannian gradient descent

\mathcal{O}_p
W^0
-\mathrm{grad} f(W^0)
  • Start from \(W_0\in\mathcal{O}_p\)
  • Iterate \(W^{t+1} = \mathcal{R}(W^t, -\eta\mathrm{grad} f(W^t))\)
W^1
-\mathrm{grad} f(W^1)
-\mathrm{grad} f(W^2)
W^2
W^3

Today's problem: retractions are often very costly for deep learning

COmputational cost

Riemannian gradient descent for a neural network: 

  • Compute \(\nabla f(W)\) using backprop
  • Compute  \(\mathrm{grad}f(W) = \mathrm{Skew}(\nabla f(W)W^\top)W\)
  • Move using a retraction \(W\leftarrow \mathcal{R}(W, -\eta \mathrm{grad} f(W))\)

Classical retractions :

  • Exponential: \(\mathcal{R}(W, AW) =\exp(A)W\)
  • Cayley:           \(\mathcal{R}(W, AW) =(I -\frac A2)^{-1}(I + \frac A2)W\)
  • Projection:    \(\mathcal{R}(W, AW) = \mathrm{Proj}_{\mathcal{O_p}}(W + AW)\)

These are:

  • costly linear algebra operations
  • not suited for GPU (hard to parralelize)
  • can be the most expensive step

Rest of the talk: find a cheaper alternative

Main idea

In a deep learning setting, moving on the manifold is too costly !

 

Can we have a method that is free to move outside the manifold that

  • Still converges to the solutions of \(\min_{W\in\mathcal{O}_p} f(W)\)
  • Has cheap iterations ?

Spoiler: yes !

Projection "paradox''

\mathcal{O}_p

Take a matrix \(M\in\mathbb{R}^{p\times p}\)

 

How  to check if \(M\in\mathcal{O}_p\) ?

M

Just compute \(\|MM^\top - I_p\|\) and check if it is close to 0.

But projecting \(M\) on \(\mathcal{O}_p\) is expensive:

 

$$\mathcal{Proj}_{\mathcal{O}_p}(M) = (MM^\top)^{-\frac12}M$$

\mathcal{Proj}_{\mathcal{O}_p}(M)

Projection "paradox''

\mathcal{O}_p

Take a matrix \(M\in\mathbb{R}^{p\times p}\)

 

It is cheap and easy to check if \(M\in\mathcal{O}_p\).

M

Just compute \(\|MM^\top - I_p\|\) and check if it is close to 0.

Idea: follow the gradient of $$\mathcal{N}(M) = \frac14\|MM^\top - I_p\|^2$$

\mathcal{Proj}_{\mathcal{O}_p}(M)

$$\nabla \mathcal{N}(M) = (MM^\top - I_p)M$$

 

 

The iterations \(M^{t+1} = M^t - \eta\nabla \mathcal{N}(M^t)\) converge to the projection

Special structure : symmetric matrix times M...

-\nabla \mathcal{N}(M)

 optimization and projection

Projection

 

Follow the gradient of $$\mathcal{N}(M) = \frac14\|MM^\top - I_p\|^2$$

$$\nabla \mathcal{N}(M) = (MM^\top - I_p)M$$

 $$\mathrm{grad}f(M) = \mathrm{Skew}(\nabla f(M)M^\top)  M$$

These two terms are orthogonal !

 

\mathcal{O}_p
M
-\nabla \mathcal{N}(M)
-\mathrm{grad}f(M)

Optimization

 

Riemannian gradient:

 

The landing field

Projection

 

Follow the gradient of $$\mathcal{N}(M) = \frac14\|MM^\top - I_p\|^2$$

$$\nabla \mathcal{N}(M) = (MM^\top - I_p)M$$

Optimization

 

Riemannian gradient:

 $$\mathrm{grad}f(M) = \mathrm{Skew}(\nabla f(M)M^\top)  M$$

$$\Lambda(M) = \mathrm{grad}f(M) + \lambda \nabla \mathcal{N}(M)$$

The landing field

$$\nabla \mathcal{N}(M) = (MM^\top - I_p)M$$

$$\mathrm{grad}f(M) = \mathrm{Skew}(\nabla f(M)M^\top)  M$$

$$\Lambda(M) = \mathrm{grad}f(M) + \lambda \nabla \mathcal{N}(M)$$

Because of orthogonality of the two terms:

$$\Lambda(M) = 0$$

if and only if

  • \(MM^\top - I_p = 0\) so \(M\) is orthogonal
  • \(\mathrm{grad}f(M) = 0\) so \(M\) is a critical point of \(f\) on \(\mathcal{O}_p\)

The landing field is cheap to compute

$$\Lambda(M) = \left(\mathrm{Skew}(\nabla f(M)M^\top) + \lambda (MM^\top-I_p)\right)M$$

 

Only matrix-matrix mutliplications ! No expensive linear algebra + parrallelizable on GPU's

 

 

Comparison to retractions:

 

The Landing algorithm:

$$\Lambda(M) = \left(\mathrm{Skew}(\nabla f(M)M^\top) + \lambda (MM^\top-I_p)\right)M$$

Starting from \(M^0\in\mathcal{O}_p\), iterate

$$M^{t+1} = M^t -\eta \Lambda(M^t)$$

\mathcal{O}_p
M^0
-\mathrm{grad}f(M)
M^1
-\nabla \mathcal{N}(M)
-\mathrm{grad}f(M)
-\mathrm{grad}f(M)
M^2
-\nabla \mathcal{N}(M)

convergence result

$$\Lambda(M) = \left(\mathrm{Skew}(\nabla f(M)M^\top) + \lambda (MM^\top-I_p)\right)M$$

Starting from \(M^0\in\mathcal{O}_p\), iterate

$$M^{t+1} = M^t -\eta \Lambda(M^t)$$

Theorem (informal):

 

If the step size \(\eta\) is small enough, then we have for all \(T\):

$$\frac1T\sum_{t=1}^T\|\mathrm{grad} f(M^t)\|^2 = O(\frac1T)$$

$$\frac1T\sum_{t=1}^T\mathcal{N}(M^t) = O(\frac1T)$$

Same rate of convergence as classical Riemannian gradient descent

Convergence to \(\mathcal{O}_p\)

Experiments

Procrustes problem

$$f(W) = \|AW - B\|^2,\enspace A, B\in\mathbb{R}^{p\times p}$$

$$p=40$$

Comparison to other Riemannian methods with retractions

Same convergence  curve as classical Riemannian gradient descent

One iteration is cheaper hence faster convergence

Distance to the manifold: increases at first then decrease

Neural networks: Training a resnet on cifar

Model: residual network, with convolutions with orthogonal kernels

 

Trained on CIFAR-10 (dataset of 60K images, 10 classes)

Conclusion

  • Landing method: useful when retractions are the bottleneck in optimization algorithms
  • Possible extensions to the Stiefel manifold (for rectangular matrices)
  • Possible extensions to SGD, variance reduction, etc...

Thanks ! 

IMA conference 2022: neural nets w. orthogonal weights

By Pierre Ablin

IMA conference 2022: neural nets w. orthogonal weights

  • 433