Criando robôs para compra e venda de criptomoedas
Belo Horizonte, 2019
RODRIGO BRITO
- Mineiro | Atleticano
- Desenvolvedor | Gopher
- Pesquisador | DCC/UFMG
www.brito.com.br
Antes de começar...
Esta palestra
não é sobre pirâmides
Esta palestra não é sobre tranformar R$1.5K em R$1M
Esta é uma palestra sobre tecnologia e desenvolvimento
TLDR;
Primeiros passos para criar o seu primeiro robô de finanças
COMO FUNCIONA?
Exchange
Uma criptomoeda não vale nada...
...até que alguém pague algo por ela!
OFERTA E DEMANDA
Mercado de Criptomoedas
- 24 horas / 7 dias por semana
- Altamente volátil
- Alta liquidez
- Exige respostas rápidas
Poxa Rodrigo, mas eu não sou um robô...
BÁSICO
COMPRA
VENDE
BULL MARKET
BEAR MARKET
INDICADORES
RSI - Relative Strength Index
COMPRA
VENDE
Moving Average (SMA, EMA, TEMA)
COMPRA
VENDE
Filtros - Moving Average
Alerta - URSO
BOLLINGER BANDS
RSI
MACD
NVT
EMA
ADX
DMI
ROC
RVI
STOCH RSI
BACKTRADER
BACKTRADER
- Open Source
- Python 2 / 3
- Dezenas de indicadores disponíveis
- Criação de gráficos
- Backtesting (Dados históricos)
- Extensível
$ pip install backtrader
Básico em Desenvolvimento
# Iniciando backtrader
cerebro = bt.Cerebro(quicknotify=True)
# Incluindo dataset
data = GenericCSVData(name="USDT", dataname="dataset/binance.csv")
cerebro.resampledata(data, timeframe=bt.TimeFrame.Minutes, compression=30)
# or cerebro.adddata(data)
# Simulando caixa
broker = cerebro.getbroker()
broker.setcommission(commission=0.001, name="BTC")
broker.setcash(100000.0)
# Incluindo estratégia
cerebro.addstrategy(MyFirstStrategy) # 90% da mágica acontece aqui
# Executando
cerebro.run()
cerebro.plot()
Broker em Produção
broker_config = {
'apiKey': '<BINANCE KEY>',
'secret': '<BINANCE SECRETE>',
'nonce': lambda: str(int(time.time() * 1000)),
'enableRateLimit': True,
}
store = CCXTStore(exchange='binance', currency="USDT", config=broker_config, retries=5)
broker_mapping = {
'order_types': {
bt.Order.Market: 'market',
bt.Order.Limit: 'limit',
bt.Order.Stop: 'stop-loss',
bt.Order.StopLimit: 'stop limit'
},
'mappings': {
'closed_order': {
'key': 'status',
'value': 'closed'
},
'canceled_order': {
'key': 'status',
'value': 'canceled'
}
}
}
broker = store.getbroker(broker_mapping=broker_mapping)
cerebro.setbroker(broker)
Estratégia
Estrutura Básica
import backtrader as bt
class MyFirstStrategy(bt.Strategy):
def __init__(self):
self.dataclose = self.datas[0].close
self.rsi = bt.indicators.RelativeStrengthIndex(period=14)
# Executado a cada novo "candle"
def next(self):
print('Price: %.2f' % self.dataclose[0])
Parâmetros
class MyStrategy(bt.Strategy):
params = dict(period_sma_fast=10, period_sma_slow=200)
def __init__(self):
sma_fast = bt.indicators.SimpleMovingAverage()
sma_slow = bt.indicators.SMA(self.datas[0], period=self.p.period_sma_slow)
self.p e self.params
cerebro.addstrategy(MyFirstStrategy, period_sma_fast=25)
Uso na definição de estratégia
Data Feed
def next(self):
# Aliases
print(self.data.close)
print(self.datas[0].close)
print(self.data0.close)
# Dados anteriores (últimos 10 candles)
print(self.data.close.get(size=10))
# Compara atual e último candle
print(self.data.close[0] > self.data.close[-1])
# Comparações entre linhas
print(self.data.close > sma)
print(sma > 30)
Operações
# Compra/Venda com preço de mercado (Market Order)
order = self.buy()
order = self.sell()
# Compra com validade
order = self.buy(valid=datetime.datetime.now() + datetime.timedelta(days=3))
# Compra com preço customizado
order = self.buy(price=self.data.close[0] * 0.95)
# Compra com quantidade customizada
order = self.buy(size=25)
# Compra limitada (Limit Order)
order = self.buy(exectype=Order.Limit,
price=self.data.close[0] * 0.95,
valid=datetime.datetime.now() + datetime.timedelta(days=3)))
# Cancelar ordem
self.broker.cancel(order)
Buy, Sell, Cancel
Controle - Ordens
def notify_order(self, order):
print('An order new/changed/executed/cancelled has been received')
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
self.log('ORDER ACCEPTED/SUBMITTED', dt=order.created.dt)
self.order = order # Importante controlar as operações.
return
if order.status in [order.Expired]:
self.log('BUY EXPIRED')
elif order.status == order.Completed:
if order.isbuy():
self.log('BUY EXECUTED, Price: %.2f' % order.executed.price)
else:
self.log('SELL EXECUTED, Price: %.2f' % order.executed.price)
Exemplo
Controle - Posição
# Posicionamento no mercado
position = self.position
position = broker.getposition()
if position:
# Tenho criptomoedas em carteira
def notify_order(self, order):
elif order.status == order.Completed:
if order.isbuy():
self.last_operation = "BUY"
else:
self.last_operation = "SELL"
Controle manual (Workaround de precisão)
Hora do show!
Live Code
DATASET
BTC / USDT - Nov - Mar (4 Meses)
Bear Market -44%
Estratégia 1: RSI
def init(self):
self.rsi = bt.indicators.RelativeStrengthIndex()
def next(self):
if self.rsi < 30:
self.buy()
if self.rsi > 70:
self.sell()
RESULTADO
PREJUÍZO -15.578%
51 Trades / 24 Won / 27 Lost
Estratégia 2: RSI+EMA
def init(self):
self.rsi = bt.indicators.RelativeStrengthIndex()
self.ema_fast = bt.indicators.EMA(period=20)
self.ema_slow = bt.indicators.EMA(period=200)
def next(self):
if self.rsi < 30 and self.ema_fast > self.ema_slow:
self.buy()
if self.rsi > 70:
self.sell()
Resultado
LUCRO 19.193%
10 Trades / 7 Won / 3 Lost
@RodrigoFBrito
github.com/rodrigo-brito
brito.com.br
Criando robôs para compra e venda de criptomoedas
By Rodrigo Brito
Criando robôs para compra e venda de criptomoedas
- 5,176