Santiago Casas
Cosmologist, Physicist, Data Scientist.
DR1 and MeerKLASS
for models of Dark Energy
*Collaboration Proposal
Santiago Casas,
with Isabella Carucci, Valeria Pettorino,
Stefano Camera, Matteo Martinelli, Martin Kunz
arXiv:2210.05705 Phys.Dark Univ. 39 (2023) 101151
L.Verde, et al 2019. arXiv:1907.10625
Lange et al. arXiv: 2301.08692
DES DRY3 arxiv:2207.05766
Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018
Gregory Horndeski
https://www.horndeskicontemporary.com/works
And in the Lorentz Institute seminar room!
Costa Rica - Arenal Volcano
Gregory Horndeski
https://www.horndeskicontemporary.com/works
Gregory Horndeski
https://www.horndeskicontemporary.com/works
And in the Lorentz Institute seminar room!
In ΛCDM the two linear gravitational potentials Ψ and Φ are equal to each other
We can describe general modifications of gravity (of the metric) at the linear level with 2 functions of scale (k) and time (a)
Only two independent functions
Planck 2015 results XIV, arXiv:1502.01590
Planck 2018 results VI, arXiv:1807.06209
2017 Forecasts for Stage-IV : Euclid, DESI, SKA1, SKA2, only GC and WL no cross-correlation
Casas et al (2017), arXiv:1703.01271
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Image credit: Isabella Carucci
Continuum emission: Allows detection of position and shapes of galaxies.
Line emission of neutral Hydrogen (HI, 21cm):
Using redshifted HI line -> spectroscopic galaxy survey
2. Intensity Mapping: Large scale correlations in HI brightness temperature -> very good redshift resolution,
good probe of structures
Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273
Directly constrains MG function Σ through Weyl potential
BAO
Clustering
RSD
Spec-z
Euclid Collaboration, IST:Forecasts, arXiv: 1910.09273
PIM(z,k)=TˉIM(z)2AP(z)Krsd2(z,μ;bHI)
FoG(z,k,μθ)×Pδδ,dw(z,k)
ΩHI =4(1+z)0.6×10−4
TˉIM(z)=189hH(z)(1+z)2H0ΩHI(z)mK
Jolicoeur et al (2020) arXiv:2009.06197
Carucci et al (2020) arXiv:2006.05996
Krsd(z,μ;bHI)=[bHI(z)2+f(z)μ2]
bHI(z)=0.3(1+z)+0.6
bg(z)= fit to simulations for given galaxy sample
Jolicoeur et al (2020) arXiv:2009.06197
Wolz et al (2021) arXiv:2102.04946
σi(z)=H(z)c(1+z)δz
PIM×g(z,k)=TˉIM(z)AP(z)rIM,opt Krsd(z,μ;bHI)
×Krsd(z,μ;bg)FoG(z,k,μθ)Pδδ,dw(z,k)
×exp[−21k2μ2(σIM(z)2+σsp(z)2)]
HI galaxies spectroscopic survey
SKA1 Redbook 2018, arXiv:1811.02743
SKA1 Medium Deep Band 2: 5000deg2
SKA1 Redbook 2018, arXiv:1811.02743
Continuum galaxy survey
SKA1 Medium Deep Band 2: 5000deg2
*kindly provided by Stefano Camera
Continuum galaxy survey
SKA1 Medium Deep Band 2: 5000deg2
SKA1 Medium Deep Band 1: 20000deg2
Euclid
DESI
Vera Rubin Obs. LSST
Given a likelihood function L, representing the probability of the data d, given the model parameters Θ , the Fisher matrix is defined as the Hessian of the L:
Assuming that L is a multivariate Gaussian distribution with a covariance matrix C independent of Θ :
The explicit form of F, depends on the given observational probe and the physical model assumption, for example for GCsp:
What do we expect from the forecasts before doing them, just by looking at the formulas and the specs?
Let's see the results !
DESI_E : high-z Emission Line Galaxies
DESI_B: low-z Bright Galaxy Sample
SKAO GCsp: low-z HI Galaxies
Work in progress:
Same but with Euclid!
PRELIMINARY
However, Euclid DR3 + SKAO AA4 is too far in the future!
Code: CosmicFishPie
S.Casas, M.Martinelli and M.Raveri, S. Pamuk and more!
Soon to be released with MCMC support!
Contains:
Euclid (spectro+photo), Planck, LSST, DESI, SKAO IM, HI and continuum
https://github.com/santiagocasas/cosmicfishpie
jaxcosmo library https://github.com/DifferentiableUniverseInitiative
Campagne, Lanusse, Zuntz, SC, et al, 2302.05163
We still need to develop many parts of a differentiable pipeline!
TOPO-COBAYA: https://github.com/santiagocasas/topo-cobaya
Thankfully provided by Zé
Thankfully provided by Zé
Now implemented into CosmicFishPie
My ex-student now collaborator Sefa Pamuk is implementing masks into a CF-based code
(now PhD candidate of José Bernal)
SKAO IM - MCMC
Using Cosmic(Jelly)Fish + Nautilus -> 40min on a laptop
Seems futuristic!
Credit: Guadalupe Cañas, Pedro Carrilho, Santiago Casas, for IST:NL/L, KPs, CLOE papers
Neglecting baryons -> bias!!
Linde, Moradinezhad, Rademacher, SC, Lesgourgues (2402.09778)
CLASS 1-loop Code in development in Aachen, RWTH
Validated against CLASS-PT, Velocileptors
Implemented in MontePython, soon in CosmicFishPie for GCsp and IM
in Fourier and "Legendre"
Text
Text
Text
Text
Backup slide
Santiago Casas
SKA1:
GC+WL+XC (Continuum) +
IM (HI 21cm) + GCsp(HI)
vs
Euclid
(Gcsp+GCph+WL+XCph)
vs
Euclid
(Gcsp+GCph+WL+XCph)+SKA1 Pk-probes.
Unfortunately, the μ constraints from Euclid alone dominate over the improvement that SKA1 "Pk-probes" add
PRELIMINARY
Backup slide
Testing at higher H0 value
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 06.12.22
Casas et al (2017), arXiv:1703.01271
Santiago Casas, 02.11.21
Santiago Casas, 06.12.22
Santiago Casas, 06.12.22
Number of dishes
Effective beam
βSD=exp[−8ln2k⊥r(z)2θb(z)2]
αSD =Nd1
Jolicoeur et al (2020) arXiv:2009.06197
Backup slide
Backup slide
Backup slide
Backup slide
By Santiago Casas
Constraining modified gravity with synergies between radio and optical cosmological surveys