Artificial Neural Network, ANN

手刻神經網路

INFOR 36th. @小海_夢想特急_夢城前

講師

  • 225 賴柏宇
  • 海之音、小海或其他類似的
  • 美術能力見底
  • 表達能力差,不懂要問
  • INFOR 36th 學術長
  • 這頁是偷來的
  • 不會 NN 所以來當 NN 講師
  • 神經網路的概念
  • 矩陣及向量
  • 前向傳播
  • 微積分的概念 - 斜率及極限
  • 偏微分的概念 - 梯度
  • 反向傳播

Index

神經網路的概念

Concept

  • 實際上神經網路的功能相當於一個函數:
    • 吃一連串的參數,輸出一連串的結果
  • 舉圖像辨識來說:

函數擬合

神經網路

像素點 1

像素點 2

像素點 3

...

像素點 n

目標 1

目標 2

目標 3

...

目標 m

  • 目標:
    • 找到一個函數,使得指定輸入對到指定輸出
  • 舉個例子:
    • 假設 f(x) = ax + b
    • x = 1 時 y = 2
    • x = 2 時 y = 6
    • 求 f(x)
  • 把這個概念推廣,只是輸入輸出複雜得多

函數擬合

  • 這樣做有什麼好處?
  • 訓練過程中找到特徵
  • 將無窮的可能性用有限的參數接近答案

函數擬合

矩陣及向量

Matrix and Vector

  • 所以接下來的問題就是:
    • 如何處理一串數字?
  • 利用矩陣和向量
  • 向量可以視為矩陣的特例

數值化

\begin {bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end {bmatrix}
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
  • 定議矩陣的加法:
  • 每一個對應的位置相加

數值化

\begin {bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {bmatrix} + \begin {bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {bmatrix} = \begin {bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end {bmatrix}
  • 定義矩陣的乘法

數值化

\begin {bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {bmatrix}
\begin {bmatrix} 1\ \ \ & 2\ \ \ & 3\\ 4\ \ \ & 5\ \ \ & 6\\ 7\ \ \ & 8\ \ \ & 9 \end {bmatrix}
\begin {bmatrix} 30 & 36 & 42 \\ 66 & 81 & 96 \\ 102 & 126 & 150 \end {bmatrix}
=
  • 定義矩陣的乘法

數值化

\begin {bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {bmatrix}
\begin {bmatrix} 1\ \ \ & 2\ \ \ & 3\\ 4\ \ \ & 5\ \ \ & 6\\ 7\ \ \ & 8\ \ \ & 9 \end {bmatrix}
\begin {bmatrix} 30 & 36 & 42 \\ 66 & 81 & 96 \\ 102 & 126 & 150 \end {bmatrix}
  • 定義矩陣的乘法

數值化

\begin {bmatrix} 1 & 2 & 3 \end {bmatrix}
\begin {bmatrix} 1\\ 4\\ 7 \end {bmatrix}
\begin {bmatrix} 30 \end {bmatrix}
= 1 \times 1 + 2 \times 4 + 3 \times 7
  • 矩陣的轉置

數值化

\begin {bmatrix} 1 & 2 & 3 \end {bmatrix}^T = \begin {bmatrix} 1 \\ 2 \\ 3 \end {bmatrix}
  • 特例:矩陣乘向量
  • 你會發現這就是一種函數

線性變換

\begin {bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end {bmatrix}
\begin {bmatrix} a\\ b\\ c \end {bmatrix}
\begin {bmatrix} 1a + 2b + 3c \\ 4a + 5b + 6c \\ 7a + 8b + 9c \end {bmatrix}
=
  • 具結合律、分配律
  • 不具交換律

線性變換

A
x
Ax
=
  • 具結合律、分配律
  • 不具交換律

線性變換

(AB)x = A(Bx) = ABx \\ A(x + y) = Ax + Ay
  • NumPy 是目前主流、基本、核心的數學相關套件之一
  • 學機器學習基本上躲不掉這東西
  • 提供高效、與底層語言兼容的資料型態
  • 方便與底層語言串接

NumPy

  • 為什麼 NumPy 很高效?
  • Python 的資料存儲型態包括:
    • 資料本身
    • 資料型態以及相關方法
  • List 是由 array of pointers 組成
  • NumPy 提供的 array 是真正的 array

NumPy

安裝 Python

  • Linux users (Debian, Ubuntu...):
    • sudo apt-get install python3
  • MacOS users:
    • 輸入後照指示做
    •  
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
brew install python3

安裝 Python

  • 確認一下是否安裝成功
  • 如果跳出版本就表示你裝對了
python3 --version

安裝 NumPy

  • 如果你裝到 Python 的老版本請自行安裝 pip
  •  
pip install numpy

使用 NumPy

  • 使用 numpy 前記得引入 numpy

 

  • 之後要使用 numpy 底下的東西就是 np.something
import numpy as np

導入 numpy 模組,稱為 np

使用 NumPy

  • 宣告陣列(矩陣)
import numpy as np

# 使用 python 的 list 宣告陣列
arr = np.array(
   [[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]]
)

# 宣告一個全是 0 的陣列
arr1 = np.zeros((2, 3))

# 宣告一個隨機填充的陣列
arr2 = np.random.random((2, 3))

print(arr, arr1, arr2, sep = '\n')

使用 NumPy

  • 可以選擇類型
import numpy as np

# 宣告一個 fp16 的陣列
arr = np.array(
    [[1, 2, 3],
     [4, 5, 6],
     [7, 8, 9]], 
    dtype = np.float16
)

print(arr)

使用 NumPy

  • 加減法
import numpy as np

arr = np.array(
   [[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]]
)

print(arr + arr, arr - arr, sep = '\n')

使用 NumPy

  • 轉置
import numpy as np

arr = np.array(
   [[1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]]
)

print(arr.T)

使用 NumPy

  • 矩陣乘法
import numpy as np

arr = np.array(
    [[1, 2, 3],
     [4, 5, 6]]
)

print(arr.dot(arr.T), arr.T.dot(arr), sep = '\n')

C++

  • 論為什麼你應該使用 NumPy
  • 註:這沒經過優化,搞不好比 NumPy 還慢
#include <cassert>
#include <cmath>
#include <concepts>
#include <functional>
#include <iostream>
#include <random>
#include <utility>
#include <vector>

template <typename Tp>
concept addable = requires(Tp a, Tp b) {
    a + b;
};

template <typename Tp>
concept minusable = requires(Tp a, Tp b) {
    a - b;
};

template <typename Tp>
concept multiplyable = requires(Tp a, Tp b) {
    a * b;
};

template <typename Tp>
    requires addable<Tp> && minusable<Tp> && multiplyable<Tp>
class Matrix {
    std::vector<std::vector<Tp>> data;
    int R, C;

public:
    Matrix() = default;
    Matrix(const Matrix<Tp> &) = default;
    Matrix(Matrix<Tp> &&) = default;
    Matrix &operator=(const Matrix<Tp> &) = default;
    Matrix &operator=(Matrix<Tp> &&) = default;

    Matrix(int _R)
        : R(_R), C(1), data(_R, std::vector<Tp>(1)) {}

    Matrix(int _R, std::function<Tp()> &&generator)
        : R(_R), C(1), data(_R, std::vector<Tp>(1)) {
        for (int i = 0; i < _R; i++)
            data[i][0] = generator();
    }

    Matrix(int _R, std::function<Tp(int)> &&generator)
        : R(_R), C(1), data(_R, std::vector<Tp>(1)) {
        for (int i = 0; i < _R; i++)
            data[i][0] = generator(i);
    }

    Matrix(int _R, int _C)
        : R(_R), C(_C), data(_R, std::vector<Tp>(_C)) {}

    Matrix(int _R, int _C, std::function<Tp()> &&generator)
        : R(_R), C(_C), data(_R, std::vector<Tp>(_C)) {
        for (int i = 0; i < _R; i++)
            for (int j = 0; j < _C; j++)
                data[i][j] = generator();
    }

    Matrix(int _R, int _C, std::function<Tp(int, int)> &&generator)
        : R(_R), C(_C), data(_R, std::vector<Tp>(_C)) {
        for (int i = 0; i < _R; i++)
            for (int j = 0; j < _C; j++)
                data[i][j] = generator(i, j);
    }

    Matrix(std::vector<std::vector<Tp>> &&_data) {
        assert(_data.size() > 0);
        R = _data.size();
        assert(_data[0].size() > 0);
        C = _data[0].size();
        data = std::forward<std::vector<std::vector<Tp>>>(_data);
    }

    Matrix(const std::vector<Tp> &_data) {
        assert(_data.size() > 0);
        R = _data.size(), C = 1;
        data.resize(R, std::vector<Tp>(1));
        for (int i = 0; i < R; i++)
            data[i][0] = _data[i];
    }

public:
    inline Tp &operator()(int _r, int _c) {
        return data[_r][_c];
    }

    inline const Tp &operator()(int _r, int _c) const {
        return data[_r][_c];
    }

    Matrix operator+(const Matrix &another) const {
        assert(R == another.R && C == another.C);

        Matrix result(R, C);
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                result(i, j) = data[i][j] + another(i, j);

        return result;
    }

    Matrix &operator+=(const Matrix &another) {
        assert(R == another.R && C == another.C);

        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                data[i][j] += another(i, j);

        return (*this);
    }

    Matrix operator-(const Matrix &another) const {
        assert(R == another.R && C == another.C);

        Matrix result(R, C);
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                result(i, j) = data[i][j] - another(i, j);

        return result;
    }

    Matrix &operator-=(const Matrix &another) {
        assert(R == another.R && C == another.C);

        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                data[i][j] -= another(i, j);

        return (*this);
    }

    Matrix operator*(Tp k) const {
        Matrix result(*this);
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                result(i, j) = data[i][j] * k;

        return result;
    }

    Matrix &operator*=(Tp k) {
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                data[i][j] *= k;

        return (*this);
    }

    Matrix operator*(const Matrix another) const {
        assert(C == another.R);

        Matrix result(R, another.C);
        for (int r = 0; r < R; r++)
            for (int c = 0; c < another.C; c++)
                for (int i = 0; i < C; i++)
                    result(r, c) += data[r][i] * another(i, c);

        return result;
    }

public:
    std::pair<int, int> size() {
        return {R, C};
    }

    friend std::ostream &operator<<(std::ostream &out, Matrix<Tp> target) {
        out << "[\n";
        for (int i = 0; i < target.R; i++) {
            out << "  [";
            for (int j = 0; j < target.C; j++)
                out << target.data[i][j] << " ";
            out << "\b]\n";
        }
        out << "]";
        return out;
    }

    Matrix T() {
        Matrix<Tp> result(C, R);
        for (int i = 0; i < C; i++)
            for (int j = 0; j < R; j++)
                result(i, j) = data[j][i];

        return result;
    }
};

前向傳播

Forward

  • 只用矩陣乘法和加法有什麼限制?
    • 實際上,矩陣是「線性的」

線性變換

  • 舉幾個直觀的例子來說:
    • 拋物線有辦法用直線表示嗎?
    • 並且,所謂線性變換:
    •  
  • 也就是說,無論經過多少次線性變換都等價於只進行一次線性變換

線性變換

C(Ax + b) + d = (AC)x + (Cb + d)
  • 所以,我們會在這裡面加入一些非線性要素
  • 常用的非線性函數有:

非線性變換

Sigmoid

tanh

ReLU

  • 我們稱這些函數為激勵函數 (Activation Function)
  • 定義           是將向量中元素進行非線性變換
  • 這樣,我們的函數應該會變得類似
  • 其中,W 為權重 (Weight),b 為 bias

非線性變換

\sigma(x)
f(x) = \sigma (Wx+b)

圖像化

x_1
x_2
x_3
z_1
z_2
= W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1
= W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2
z = Wx+b

圖像化

x_1
x_2
x_3
\sigma(z_1)
\sigma(z_2)

然而,只有一層的話經常複雜度不夠

聰明的你肯定能想到怎麼做吧

圖像化

然而,只有一層的話經常複雜度不夠

聰明的你肯定能想到怎麼做吧

x_1
x_2
x_3
x'_1
x'_2
x''_1
x''_2
x''_1
x''_2

...

圖像化

以前一層激活後的輸出作為後一層的輸入

看起來就像在把資料往前傳

x_1
x_2
x_3
x'_1
x'_2
x''_1
x''_2
x''_1
x''_2

...

實作

import numpy as np

class NeuralNetwork:
    def __init__(self, topo: list[int], act, dact):
        self.weight = [np.zeros((0, 0), dtype = np.float16)]
        self.bias = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.value = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.zeta = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.act = act
        self.dact = dact
        self.topo = topo
        self.num_layers = len(topo)

        for i in range(self.num_layers - 1):
            self.weight.append(np.random.randn(topo[i + 1], topo[i]))
            self.bias.append(np.random.randn(topo[i + 1], 1))
            self.value.append(np.zeros((topo[i + 1], 1), dtype = np.float16))
            self.zeta.append(np.zeros((topo[i + 1], 1), dtype = np.float16))
        


    
    def forward(self, input: np.ndarray) -> None:
        self.value[0] = input
        for i in range(self.num_layers - 1):
            self.zeta[i + 1] = np.dot(self.weight[i + 1], self.value[i]) + self.bias[i + 1]
            self.value[i + 1] = self.act(self.zeta[i + 1])

C++

class NeuralNetwork {
    std::vector<Matrix<float>> weight, bias, value, zeta;
    std::vector<int> topo;
    std::function<float(float)> act_func;
    unsigned size;

public:
    NeuralNetwork() = delete;
    NeuralNetwork(const NeuralNetwork &) = default;
    NeuralNetwork(NeuralNetwork &&) = default;

    NeuralNetwork(std::vector<int> &&_topo, std::function<float(float)> _act_func)
        : topo(std::forward<std::vector<int>>(_topo)), act_func(std::forward<std::function<float(float)>>(_act_func)), size(topo.size()) {
        std::default_random_engine random_engine(std::random_device{}());
        std::normal_distribution<float> distributor(-1.0, 1.0);
        auto random = [&]() -> float { return distributor(random_engine); };
        weight.resize(size), bias.resize(size), value.resize(size), zeta.resize(size);

        bias[0] = zeta[0] = value[0] = Matrix<float>(topo[0]);
        for (int i = 1; i < size; i++) {
            weight[i] = Matrix<float>(topo[i], topo[i - 1], random);
            zeta[i] = value[i] = bias[i] = Matrix<float>(topo[i], random);
        }
    }

public:
    std::vector<float> forward(std::vector<float> &&input) {
        auto activate = [&](int value_index) -> void {
            Matrix<float> &x = value[value_index], &z = zeta[value_index];
            for (int i = 0; i < topo[value_index]; i++) x(i, 0) = z(i, 0);
        };

        value[0] = std::forward<std::vector<float>>(input);

        for (int i = 1; i < size; i++) {
            zeta[i] = weight[i] * value[i - 1] + bias[i];
            activate(i);
        }

        std::vector<float> result(topo[size - 1]);
        for (int i = 0; i < topo[size - 1]; i++)
            result[i] = value[size - 1](i, 0);

        return result;
    }
};

極限 & 斜率

Calculus

  • 很多人開玩笑說「生活哪裡用得到微積分」
  • 微積分確實很有用,但不是體現在日常生活中
  • 微積分可以用來
    • 處理連續及非連續的性質
    • 處理極限的情況(極大、極小、極接近)
    • 代數學和幾何學的結合
    • ...

微積分的用途

  • 讓我們從非常不嚴謹但直觀的觀點切入
  • 斜率:傾斜的程度

斜率

x
y
f(x) = x + 1
f(x) = \frac 1 2 x
f(x) = -x
  • 以 f(x) = mx + b 來說,傾斜程度只和 m 有關
  • 我們定這個值為斜率

斜率

x
y
f(x) = x + 1
f(x) = \frac 1 2 x
f(x) = -x
  • 在幾何意義上來說,這個值代表
    • 意思是 y 的改變量和 x 的改變量的比值

斜率

x
y
f(x) = x + 1
f(x) = \frac 1 2 x
f(x) = -x
\frac{\Delta y}{\Delta x}
  • 在幾何意義上來說,這個值代表
    • 意思是 y 的改變量和 x 的改變量的比值

斜率

\frac{\Delta y}{\Delta x}

m = 1: 當 x 增加 1 時 y 增加 1

m = 2: 當 x 增加 1 時 y 增加 2

\Delta x
\Delta y
  • 當然這個值可以是負的,線會是左上 - 右下

斜率

m = 1: 當 x 增加 1 時 y 增加 -1

  • 讓我們從非常不嚴謹但直觀的觀點切入
  • 所謂極限,就是非常極端的情況
    • 非常接近某數
    • 非常大
    • 非常小
    • ...

極限

  • 剛剛討論斜率只討論直線的狀況
  • 曲線也有斜率:切線斜率
  • 切線也有一個切點,所以稱那是該點的斜率

極限 & 斜率

切線斜率 = -0.23

  • 問題來了,切線斜率怎麼求?
  • 結合極限的概念去想

極限 & 斜率

  • 兩點一線

極限 & 斜率

  • 兩點一線

極限 & 斜率

  • 兩點一線

極限 & 斜率

  • 兩點一線 -> 接近一點一線

極限 & 斜率

  • 兩點一線的求法

極限 & 斜率

(x, f(x))
(x + h, f(x + h))
m = \frac {f(x + h) - f(x)}{h}
  • 接近一點一線

極限 & 斜率

m = \frac {f(x + h) - f(x)}{h},\ h \rightarrow 0
  • 換個專業一點的寫法

極限 & 斜率

m = \lim_{h\rightarrow0} \frac {f(x + h) - f(x)}{h}
  • 以                         為例

極限 & 斜率

\lim_{h\rightarrow0} \frac {f(x + h) - f(x)}{h} = \lim_{h\rightarrow0} \frac{(a(x + h) + b) - (ax + b)}{h} = \lim_{h\rightarrow0} \frac{ah}{h} = \lim_{h\rightarrow0} a = a
f(x) = ax + b
  • 以                                    為例
f(x) = ax^2 + bx + c
\lim_{h\rightarrow0} (\frac {f(x + h) - f(x)}{h})
= \lim_{h\rightarrow0} (\frac{(a(x + h)^2 + b(x + h) + c) - (ax^2 + bx + c)}{h})
= \lim_{h\rightarrow0} (\frac{2axh + ah^2 + bh}{h}) = \lim_{h\rightarrow0} (2ax + ah + b) = 2ax + b
  •                    也是一種     的函數
  • 把原函數轉成    對該點斜率的函數稱為微分
  •           微分可以記成          或者

極限 & 斜率

a, 2ax + b
x
x
f(x)
f'(x)
\frac{d}{dx} f(x)
  • 一般的微分如果都照定義做太麻煩,以下是幾個通則:

微分

\frac{d}{dx} x^n = nx^{n-1}
\frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)
\frac{d}{dx} e^x = e^x
\frac{d}{dx} f(g(x)) = \frac{d}{dg} f(g) \frac{d}{dx} g(x)
(fg)' = f'g + fg'
(\frac g h)' = \frac {g'h - gh'}{h^2}

偏微分

Partial Derivative

  • 然而,微分只能處理單變數的函數
  • 偏微分能幫助我們處理更多變數的東西
  • 偏微分處理的東西會像是
    • 多變數打到單變數上
    • 向量 -> 純量

偏微分

f(x, y, z) = xyz
  • 既然一般的微分只有單變數,那就只看一個
  • 其他的變數怎麼辦?
  • 當常數啊

偏微分

\frac{\partial}{\partial x} (x + y)^2 = \frac{\partial}{\partial x} x^2 + 2xy + y^2 = 2x + 2y
\frac{\partial}{\partial x} xy = y
  • 接著我們把所有變量合成一個向量稱為梯度

梯度

\begin {bmatrix} \frac {\partial f}{\partial x} \\ \\ \frac {\partial f}{\partial y} \\ \\ \frac {\partial f}{\partial z} \end {bmatrix}
f(x, y, z)

的梯度:

  • 梯度具有什麼幾何意義呢?
  • 我們從最基本的單變數,也就是斜率看起

梯度

  • 斜率為正,放到 x 軸上相當於是正向

梯度

  • 斜率為負,放到 x 軸上相當於是負向
  • 發現了嗎?它永遠指向比較高的那側

梯度

  • 而梯度相當於是多個維度疊合在一起
  • 所以,梯度其實就是指向高處的向量

梯度

反向傳播

Backward

  • 前向傳播時提到這樣做理論上應該可以很好地貼合各類函數
  • 然而,我們沒提到要怎麼貼合
    • 總不可能手動調參數吧?

擬合

  • 於是,我們要介紹訓練的方法:反向傳播
  • 利用已知的輸入和輸出調整參數

擬合

  • Loss Function 是當前的輸出和期望的差距
  • 舉個例子
    • 預期輸出是(0, 1),實際輸出是(0, 1)
    • 損失函數為 0
    • 預期輸出是(0, 1),實際輸出是 (1, 1)
    • 損失函數 > 0

損失函數

  • 損失函數可以用距離平方表示
    • 注意這只是其中一種損失函數
  • 假設預期輸出                            實際輸出
  • 損失

損失函數

(y_1, y_2, y_3...y_n)
(x_1, x_2, x_3...x_n)
L = \sum^n_{i=1} (y_i - x_i)^2 = (y_1 - x_1)^2 + (y_2 - x_2)^2...(y_n - x_n)^2

*在實務上我們通常會在前面乘上 1/2

  • 現在的目標是要減小這個損失
  • 我們要怎麼連結參數和損失?
    • 把損失試著表示成參數的函數!
    • 然後呢?

損失函數

L =\frac{1}{2} \sum^n_{i=1} (y_i - x_i)^2
L = f(args)
  • 前面提到,梯度是指向高處的向量
  • 我們的目標是減少損失
  • 往梯度的反方向走!

梯度下降

args
L
  • 前面提到,梯度是指向高處的向量
  • 我們的目標是減少損失
  • 往梯度的反方向走!

梯度下降

args
L
  • 問題來了,怎麼把損失表示成參數相關的函數

損失函數

  • 好像有點太複雜,我們先關注 W 中的其中一個數吧
x^1_1
x^1_2
x^1_3
\sigma(z_1)
\sigma(z_2)
\begin {bmatrix} W^1_1 \\ W^1_2 \\ \end {bmatrix}
=\sigma (W^1_{11}x^1_1 + W^1_{12}x^1_2 + W^1_{13}x^1_3 + b_1)
=\sigma (W^1_{21}x^1_1 + W^1_{22}x^1_2 + W^1_{23}x^1_3 + b_2)

損失函數

L = \frac 1 2 \sum^n_{i = 0} (y_i - x_i)^2
\frac{\partial}{\partial W^1_{rc}} L = \frac{\partial}{\partial W^1_{rc}} \frac 1 2 \sum^n_{i = 0} (y_i - x_i)^2
=\frac 1 2 (\frac{\partial}{\partial x_r} \sum^n_{i = 0} (y_i - x_i)^2) (\frac{\partial}{\partial W^1_{rc}} x_r)
=\frac 1 2 (2x_r - 2y_r)(\frac{\partial}{\partial W^1_{rc}} x_r)
= (x_r - y_r)(\frac{\partial}{\partial W^1_{rc}} \sigma(z_r))

損失函數

\frac{\partial}{\partial W^1_{rc}} L = \frac{\partial}{\partial W^1_{rc}} \frac 1 2 \sum^n_{i = 0} (y_i - x_i)^2
=(x_r - y_r)(\frac{\partial}{\partial W^1_{rc}} \sigma(z_r))
=(x_r - y_r)(\frac{\partial}{\partial z_r} \sigma(z_r))(\frac{\partial}{\partial W^1_{rc}} z_r)
=(x_r - y_r)\sigma'(z_r)(\frac{\partial}{\partial W^1_{rc}} (W^1_rx^1 + b^1_r))
=(x_r - y_r)\sigma'(z_r)(\frac{\partial}{\partial W^1_{rc}} (W^1_{r1}x^1_1 + W^1_{r2}x^1_2 + ... + W^1_{rc}x^1_c + ... W^1_{rm}x^1_m + b^1_r))
=(x_r - y_r)\sigma'(z_r)x^1_c

損失函數

  • b 是類似的,但是在最後這步有點不同
=(x_r - y_r)\sigma'(z_r)
\frac{\partial}{\partial b^1_r} L
=(x_r - y_r)\sigma'(z_r)(\frac{\partial}{\partial b^1_r} (W^1_{r1}x^1_1 + W^1_{r2}x^1_2 + ... + W^1_{rc}x^1_c + ... W^1_{rm}x^1_m + b^1_r))

損失函數

  • 結論:
W^1_{rc} \leftarrow W^1_{rc} - k(x_r - y_r)\sigma'(z_r)x^1_c
b^1_r \leftarrow b^1_r - k(x_r - y_r)\sigma'(z_r)
  • 再加上一些通靈其實可以得出更簡潔的結論
W^1 \leftarrow W^1 - r\ dW, dW = (x - y)\sigma'(z)(x^1)^T

其中 k 是常數,稱為學習率

b^1 \leftarrow b^1 - r\ db, db = (x - y)\sigma'(z)

反向傳播

  • 但這樣只有更新一層的參數
  • 我們再把前一層的參數打開吧
  • 過程有點麻煩,講結論
\frac{\partial}{\partial W^2_{hc}} L = \sum^n_{i = 1} \sigma'(z_i)W^1_{ih}(x^1_h - y^1_h)\sigma'(z^1_h)x^2_c
  • 這樣計算複雜度不會太高嗎?
  • 會,所以我們才要用反向傳播

反向傳播

  • 用比較不嚴謹的寫法會像是
\frac{\partial L}{\partial W^{l-1}} = \frac{\partial L}{\partial x^{l-1}}\frac{\partial x^{l-1}}{\partial z^{l-1}}\frac{\partial z^{l-1}}{\partial W^{l-1}}
= \frac{\partial L}{\partial x^{l-1}}\sigma'(z^{l-1})x^{l-1}
  • 而前面的           就是剛剛難計算的那部份,可以拆成
\frac{\partial L}{\partial x^{l-1}}
\frac{\partial L}{\partial x^{l-1}} = \frac{\partial L}{\partial x^l} \frac{\partial x^l}{\partial z^{l-1}} \frac{\partial z^{l-1}}{\partial x^{l-1}}
= \frac{\partial L}{\partial x^l} \sigma'(z^l)W^l

上標代表它在第幾層

反向傳播

\frac{\partial L}{\partial x^{l - 1}} = \frac{\partial L}{\partial x^l} \sigma'(z^l)W^l
  • 不難發現有遞迴關係
  • 我們從最後一層算回去的時候順便幫前一層算這東西

反向傳播

\frac{\partial L}{\partial W^{l-1}} = \frac{\partial L}{\partial x^{l-1}}\frac{\partial x^{l-1}}{\partial z^{l-1}}\frac{\partial z^{l-1}}{\partial W^{l-1}}
  • 不難發現有遞迴關係
  • 我們從最後一層算回去的時候順便幫前一層算
  • 利用 dx 更新 W 和 B
\frac{\partial L}{\partial b^{l-1}} = \frac{\partial L}{\partial x^{l-1}}\frac{\partial x^{l-1}}{\partial z^{l-1}}\frac{\partial z^{l-1}}{\partial b^{l-1}}
= \frac{\partial L}{\partial x^{l-1}}\sigma'(z^{l-1})x^{l-1}
= \frac{\partial L}{\partial x^{l-1}}\sigma'(z^{l-1})
\frac{\partial L}{\partial x^{l - 1}}

反向傳播

Python 實作要小心 Vector 和 Matrix 上的差別

import numpy as np

class NeuralNetwork:
    def __init__(self, topo: list[int], act, dact):
        self.weight = [np.zeros((0, 0), dtype = np.float16)]
        self.bias = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.value = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.zeta = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.act = act
        self.dact = dact
        self.topo = topo
        self.num_layers = len(topo)

        for i in range(self.num_layers - 1):
            self.weight.append(np.random.randn(topo[i + 1], topo[i]))
            self.bias.append(np.random.randn(topo[i + 1], 1))
            self.value.append(np.zeros((topo[i + 1], 1), dtype = np.float16))
            self.zeta.append(np.zeros((topo[i + 1], 1), dtype = np.float16))
        


    
    def forward(self, input: np.ndarray) -> None:
        self.value[0] = input
        for i in range(self.num_layers - 1):
            self.zeta[i + 1] = np.dot(self.weight[i + 1], self.value[i]) + self.bias[i + 1]
            self.value[i + 1] = self.act(self.zeta[i + 1])

    
    def backward(self, label: np.ndarray, learning_rate) -> None:
        dx = self.value[-1] - label
        for i in range(self.num_layers - 1, 0, -1):
            db = dx * self.dact(self.zeta[i])
            dW = np.dot(db, self.value[i - 1].T)
            dx = np.dot(self.weight[i].T, db)
            self.weight[i] -= learning_rate * dW
            self.bias[i] -= learning_rate * db
    
    def predict(self, input: np.ndarray) -> np.ndarray:
        self.forward(input)
        return self.value[-1]

    def fit(self, input: np.ndarray, label: np.ndarray, learning_rate) -> None:
        self.forward(input)
        self.backward(label, learning_rate)

反向傳播

C++ 實作一切都自己來,自己肯定比較了解

class NeuralNetwork {
    std::vector<Matrix<float>> weight, bias, value, zeta;
    std::vector<int> topo;
    std::function<float(float)> act_func, dact_func;
    unsigned size;

public:
    NeuralNetwork() = delete;
    NeuralNetwork(const NeuralNetwork &) = default;
    NeuralNetwork(NeuralNetwork &&) = default;

    NeuralNetwork(std::vector<int> &&_topo, std::function<float(float)> _act_func, std::function<float(float)> _dact_func)
        : topo(std::forward<std::vector<int>>(_topo)), act_func(std::forward<std::function<float(float)>>(_act_func)), dact_func(std::forward<std::function<float(float)>>(_dact_func)), size(topo.size()) {
        std::default_random_engine random_engine(std::random_device{}());
        std::normal_distribution<float> distributor(-1.0, 1.0);
        auto random = [&]() -> float { return distributor(random_engine); };
        weight.resize(size), bias.resize(size), value.resize(size), zeta.resize(size);

        weight[0] = bias[0] = zeta[0] = value[0] = Matrix<float>(topo[0]);
        for (int i = 1; i < size; i++) {
            weight[i] = Matrix<float>(topo[i], topo[i - 1], random);
            zeta[i] = value[i] = bias[i] = Matrix<float>(topo[i], random);
        }
    }

private:
    void forward(const std::vector<float> &input) {
        auto activate = [&](int value_index) -> void {
            Matrix<float> &x = value[value_index], &z = zeta[value_index];
            for (int i = 0; i < topo[value_index]; i++) x(i, 0) = act_func(z(i, 0));
        };

        value[0] = input;

        for (int i = 1; i < size; i++) {
            zeta[i] = weight[i] * value[i - 1] + bias[i];
            activate(i);
        }
    }

    void backward(const std::vector<float> &output, float learning_rate) {
        Matrix<float> label(output);
        Matrix<float> dx = value[size - 1] - label;
        for (int i = size - 1; i > 0; i--) {
            Matrix<float> db(dx);
            for (int j = 0; i < topo[j]; j++)
                db(j, 0) *= dact_func(zeta[i](j, 0));

            Matrix<float> dW(db * value[i - 1].T());
            dx = weight[i].T() * db;
            weight[i] -= dW * learning_rate;
            bias[i] -= db * learning_rate;
        }
    }

public:
    std::vector<float> predict(const std::vector<float> &input) {
        forward(input);
        std::vector<float> result(topo[size - 1]);
        for (int i = 0; i < topo[size - 1]; i++)
            result[i] = value[size - 1](i, 0);
        return result;
    }

    void fit(const std::vector<float> &input, const std::vector<float> &output, double learning_rate) {
        forward(input);
        backward(output, learning_rate);
    }
};

XOR 測試

XOR 是簡單的非線性問題

可以拿來驗證神經網路具有非線性函數的擬合

import numpy as np

class NeuralNetwork:
    def __init__(self, topo: list[int], act, dact):
        self.weight = [np.zeros((0, 0), dtype = np.float16)]
        self.bias = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.value = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.zeta = [np.zeros((topo[0], 1), dtype = np.float16)]
        self.act = act
        self.dact = dact
        self.topo = topo
        self.num_layers = len(topo)

        for i in range(self.num_layers - 1):
            self.weight.append(np.random.randn(topo[i + 1], topo[i]))
            self.bias.append(np.random.randn(topo[i + 1], 1))
            self.value.append(np.zeros((topo[i + 1], 1), dtype = np.float16))
            self.zeta.append(np.zeros((topo[i + 1], 1), dtype = np.float16))
        


    
    def forward(self, input: np.ndarray) -> None:
        self.value[0] = input
        for i in range(self.num_layers - 1):
            self.zeta[i + 1] = np.dot(self.weight[i + 1], self.value[i]) + self.bias[i + 1]
            self.value[i + 1] = self.act(self.zeta[i + 1])

    
    def backward(self, label: np.ndarray, learning_rate) -> None:
        dx = self.value[-1] - label
        for i in range(self.num_layers - 1, 0, -1):
            db = dx * self.dact(self.zeta[i])
            dW = np.dot(db, self.value[i - 1].T)
            dx = np.dot(self.weight[i].T, db)
            self.weight[i] -= learning_rate * dW
            self.bias[i] -= learning_rate * db
    
    def predict(self, input: np.ndarray) -> np.ndarray:
        self.forward(input)
        return self.value[-1]

    def fit(self, input: np.ndarray, label: np.ndarray, learning_rate) -> None:
        self.forward(input)
        self.backward(label, learning_rate)


	
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
	
	
def dsigmoid(x):
    return sigmoid(x) * (1 - sigmoid(x))

nn = NeuralNetwork([2, 3, 1], sigmoid, dsigmoid)



for i in range(1000):
    nn.fit(np.array([[0], [0]]), np.array([[0]]), 2)
    nn.fit(np.array([[0], [1]]), np.array([[1]]), 2)
    nn.fit(np.array([[1], [0]]), np.array([[1]]), 2)
    nn.fit(np.array([[1], [1]]), np.array([[0]]), 2)

print(nn.predict(np.array([[0], [0]])))
print(nn.predict(np.array([[0], [1]])))
print(nn.predict(np.array([[1], [0]])))
print(nn.predict(np.array([[1], [1]])))

XOR 測試

XOR 是簡單的非線性問題

可以拿來驗證神經網路具有非線性函數的擬合

#include <cassert>
#include <cmath>
#include <concepts>
#include <functional>
#include <iostream>
#include <random>
#include <utility>
#include <vector>

template <typename Tp>
concept addable = requires(Tp a, Tp b) {
    a + b;
};

template <typename Tp>
concept minusable = requires(Tp a, Tp b) {
    a + b;
};

template <typename Tp>
concept multiplyable = requires(Tp a, Tp b) {
    a * b;
};

template <typename Tp>
    requires addable<Tp> && minusable<Tp> && multiplyable<Tp>
class Matrix {
    std::vector<std::vector<Tp>> data;
    int R, C;

public:
    Matrix() = default;
    Matrix(const Matrix<Tp> &) = default;
    Matrix(Matrix<Tp> &&) = default;
    Matrix &operator=(const Matrix<Tp> &) = default;
    Matrix &operator=(Matrix<Tp> &&) = default;

    Matrix(int _R)
        : R(_R), C(1), data(_R, std::vector<Tp>(1)) {}

    Matrix(int _R, std::function<Tp()> &&generator)
        : R(_R), C(1), data(_R, std::vector<Tp>(1)) {
        for (int i = 0; i < _R; i++)
            data[i][0] = generator();
    }

    Matrix(int _R, std::function<Tp(int)> &&generator)
        : R(_R), C(1), data(_R, std::vector<Tp>(1)) {
        for (int i = 0; i < _R; i++)
            data[i][0] = generator(i);
    }

    Matrix(int _R, int _C)
        : R(_R), C(_C), data(_R, std::vector<Tp>(_C)) {}

    Matrix(int _R, int _C, std::function<Tp()> &&generator)
        : R(_R), C(_C), data(_R, std::vector<Tp>(_C)) {
        for (int i = 0; i < _R; i++)
            for (int j = 0; j < _C; j++)
                (*this)(i, j) = generator();
    }

    Matrix(int _R, int _C, std::function<Tp(int, int)> &&generator)
        : R(_R), C(_C), data(_R, std::vector<Tp>(_C)) {
        for (int i = 0; i < _R; i++)
            for (int j = 0; j < _C; j++)
                (*this)(i, j) = generator(i, j);
    }

    Matrix(std::vector<std::vector<Tp>> &&_data) {
        assert(_data.size() > 0);
        R = _data.size();
        assert(_data[0].size() > 0);
        C = _data[0].size();
        data = std::forward<std::vector<std::vector<Tp>>>(_data);
    }

    Matrix(const std::vector<Tp> &_data) {
        assert(_data.size() > 0);
        R = _data.size(), C = 1;
        data.resize(R, std::vector<Tp>(1));
        for (int i = 0; i < R; i++)
            data[i][0] = _data[i];
    }

public:
    inline Tp &operator()(int _r, int _c) {
        return data[_r][_c];
    }

    inline const Tp &operator()(int _r, int _c) const {
        return data[_r][_c];
    }

    Matrix operator+(const Matrix &another) const {
        assert(R == another.R && C == another.C);

        Matrix result(R, C);
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                result(i, j) = (*this)(i, j) + another(i, j);

        return result;
    }

    Matrix &operator+=(const Matrix &another) {
        assert(R == another.R && C == another.C);

        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                (*this)(i, j) += another(i, j);

        return (*this);
    }

    Matrix operator-(const Matrix &another) const {
        assert(R == another.R && C == another.C);

        Matrix result(R, C);
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                result(i, j) = (*this)(i, j) - another(i, j);

        return result;
    }

    Matrix &operator-=(const Matrix &another) {
        assert(R == another.R && C == another.C);

        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                (*this)(i, j) -= another(i, j);

        return (*this);
    }

    Matrix operator*(Tp k) const {
        Matrix result(*this);
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                result(i, j) *= k;

        return result;
    }

    Matrix &operator*=(Tp k) {
        for (int i = 0; i < R; i++)
            for (int j = 0; j < C; j++)
                (*this)(i, j) *= k;

        return (*this);
    }

    Matrix operator*(const Matrix another) const {
        assert(C == another.R);

        Matrix result(R, another.C);
        for (int r = 0; r < R; r++)
            for (int c = 0; c < another.C; c++)
                for (int i = 0; i < C; i++)
                    result(r, c) += (*this)(r, i) * another(i, c);

        return result;
    }

public:
    std::pair<int, int> size() {
        return {R, C};
    }

    friend std::ostream &operator<<(std::ostream &out, const Matrix<Tp> &target) {
        out << "[\n";
        for (int i = 0; i < target.R; i++) {
            out << "  [";
            for (int j = 0; j < target.C; j++)
                out << target.data[i][j] << " ";
            out << "\b]\n";
        }
        out << "]";
        return out;
    }

    Matrix T() {
        Matrix<Tp> result(C, R);
        for (int i = 0; i < C; i++)
            for (int j = 0; j < R; j++)
                result(i, j) = (*this)(j, i);

        return result;
    }
};

class NeuralNetwork {
    std::vector<Matrix<float>> weight, bias, value, zeta;
    std::vector<int> topo;
    std::function<float(float)> act_func, dact_func;
    unsigned size;

public:
    NeuralNetwork() = delete;
    NeuralNetwork(const NeuralNetwork &) = default;
    NeuralNetwork(NeuralNetwork &&) = default;

    NeuralNetwork(std::vector<int> &&_topo, std::function<float(float)> _act_func, std::function<float(float)> _dact_func)
        : topo(std::forward<std::vector<int>>(_topo)), act_func(std::forward<std::function<float(float)>>(_act_func)), dact_func(std::forward<std::function<float(float)>>(_dact_func)), size(topo.size()) {
        std::default_random_engine random_engine(std::random_device{}());
        std::normal_distribution<float> distributor(-1.0, 1.0);
        auto random = [&]() -> float { return distributor(random_engine); };
        weight.resize(size), bias.resize(size), value.resize(size), zeta.resize(size);

        weight[0] = bias[0] = zeta[0] = value[0] = Matrix<float>(topo[0]);
        for (int i = 1; i < size; i++) {
            weight[i] = Matrix<float>(topo[i], topo[i - 1], random);
            zeta[i] = value[i] = bias[i] = Matrix<float>(topo[i], random);
        }
    }

private:
    void forward(const std::vector<float> &input) {
        auto activate = [&](int value_index) -> void {
            Matrix<float> &x = value[value_index], &z = zeta[value_index];
            for (int i = 0; i < topo[value_index]; i++) x(i, 0) = act_func(z(i, 0));
        };

        value[0] = input;

        for (int i = 1; i < size; i++) {
            zeta[i] = weight[i] * value[i - 1] + bias[i];
            activate(i);
        }
    }

    void backward(const std::vector<float> &output, float learning_rate) {
        Matrix<float> label(output);
        Matrix<float> dx = value[size - 1] - label;
        for (int i = size - 1; i > 0; i--) {
            Matrix<float> db(dx);
            for (int j = 0; i < topo[j]; j++)
                db(j, 0) *= dact_func(zeta[i](j, 0));

            Matrix<float> dW(db * value[i - 1].T());
            dx = weight[i].T() * db;
            weight[i] -= dW * learning_rate;
            bias[i] -= db * learning_rate;
        }
    }

public:
    std::vector<float> predict(const std::vector<float> &input) {
        forward(input);
        std::vector<float> result(topo[size - 1]);
        for (int i = 0; i < topo[size - 1]; i++)
            result[i] = value[size - 1](i, 0);
        return result;
    }

    void fit(const std::vector<float> &input, const std::vector<float> &output, double learning_rate) {
        forward(input);
        backward(output, learning_rate);
    }
};

int main() {
    auto sigmoid = [](float x) -> float { return 1.0 / (1 + exp(-x)); };
    auto dsigmoid = [sigmoid](float x) -> float { return sigmoid(x) * (1 - sigmoid(x)); };

    NeuralNetwork nn({2, 3, 1}, sigmoid, dsigmoid);
    for (int i = 0; i < 1000; i++) {
        nn.fit({0, 0}, {0}, 0.5);
        nn.fit({0, 1}, {1}, 0.5);
        nn.fit({1, 0}, {1}, 0.5);
        nn.fit({1, 1}, {0}, 0.5);
    }

    std::cout << nn.predict({0, 0})[0] << "\n";
    std::cout << nn.predict({0, 1})[0] << "\n";
    std::cout << nn.predict({1, 0})[0] << "\n";
    std::cout << nn.predict({1, 1})[0] << "\n";
}

手刻神經網路

By 海之音

手刻神經網路

四校聯合放課 - 彈性時間,手刻神經網路

  • 130