Problem 5

Background: SIR model

  • \(S(t)\): number of Susceptible people at time \(t\)
  • \(I(t)\): number of Infected people at time \(t\) 
  • \(R(t)\): number of people who are Removed/Recovered because they've gained immunity 
  • Total population: \(N = S(t) + I(t) + R(t)\) 

\(I(t)\)

\(S(t)\)

\(R(t)\)

a.

Explain the differential equation \[\frac{dS}{dt} = -bs(t) I(t)\] for the number of susceptibles 

A: \(S(t+1) - S(t) \approx \frac{dS}{dt} = -bs(t) I(t) \)

Divide the above equation by \(N\) on both sides:

\[\frac{ds}{dt} = -bs(t) i(t) \]

since \(s(t) = S(t) / N\) and \(i(t) = I(t) / N\) 

\(b\): number of contacts that each infected individual meets per day 

a.

Explain the differential equation \[\frac{dr}{dt} = ki(t)\] for the fraction of recovered 

A: \(R(t+1) - R(t) \approx \frac{dR}{dt} = kI(t)  \)

Divide the above equation by \(N\) on both sides:

\[\frac{dr}{dt} = k i(t) \]

since \(r(t) = R(t) / N\) 

\(k\): recovery rate 

b.

Derive \(\displaystyle \frac{di}{dt}\) and explain 

A: Given \(S(t) + I(t) + R(t) = N\) we have 

\[s(t) + i(t) + r(t) = N / N = 1\]

\[\implies \frac{ds}{dt} + \frac{di}{dt} + \frac{dr}{dt} = 0\]

Substitute and obtain 

\[\frac{di}{dt}=(bs(t)-k)i(t) \]

From a: 

\(\frac{ds}{dt} = -bs(t) i(t)\) 

\(\frac{dr}{dt} = ki(t) \)

c.

Is fixed population a good assumption for modeling COVID-19? 

A: It depends. 

  • Deterministic view vs Probabilistic view 
  • Travel restrictions were lax during the early days of the spread 
  • Captures local spread but not between communities 

d.

Under what condition does the \(i(t)\) curve attain its maximum? 

A: By the chain rule, \[\frac{di}{dt} = \frac{di}{ds}\frac{ds}{dt} \implies \frac{di}{ds} = \frac{di}{dt}/\frac{ds}{dt}\]

From a & b: 

\(\frac{ds}{dt} = -bs(t) i(t)\) 

\(\frac{di}{dt} = (bs(t) -k)i(t) \)

\frac{di}{ds}=\frac{bs(t)-k}{-bs(t)}=-1+\frac{k}{bs(t)}
\implies i(s)= -s + \frac{k}{b}\ln(s) + C
  • \(i''(s) \leq 0 \implies \) \(i\) is a concave function in \(s\) 
  • FOC: \(i'(s) = -1 + \frac{k}{c}\frac{1}{s} = 0\) tells us that maximum is reached when \(s = \frac{k}{b}\)

integrate

e.

Explain why \(\frac{b}{k} = \frac{\ln s_\infty}{s_\infty - 1}\). Plot \(s_\infty\) as a function of \(b/k\). 

A: Consider \(t=0\) and \(t = \infty\) respectively. 

\begin{cases} i(s_\infty) = -s_\infty+ \frac{k}{b} \ln s_\infty + C\\ i(s_0) = -s_0+ \frac{k}{b} \ln s_0+ C \end{cases}
i(s)= -s + \frac{k}{b}\ln(s) + C

Since \(s_0 \approx 1, i(0) \approx 0, i(s_\infty) = 0\), we get the equation 

\[\frac{b}{k} = \frac{\ln s_\infty}{s_\infty - 1}\]

e.

Explain why \(\frac{b}{k} = \frac{\ln s_\infty}{s_\infty - 1}\). Plot \(s_\infty\) as a function of \(b/k\). 

\frac{b}{k} = \frac{\ln s_\infty}{s_\infty - 1}

\(s_\infty\)

\(b/k\)

Recall that 

\(s_\infty\) is upperbounded by 1

\(1\)

\frac{b}{k} = \frac{\ln s_\infty}{s_\infty - 1}

\(s_\infty\)

\(b/k\)

Recall that 

\(s_\infty\) is upperbounded by 1

\(1\)

Networks-p5

By Sheng Long

Networks-p5

  • 21