From
Style Transfer
to
Text-Driven Image Manipulation
湯沂達
台灣人工智慧學校技術處
2021/12/10
Replay
講者
湯沂達
Email
changethewhat@gmail.com / yidar@aiacademy.tw
Did you see these?
(A) https://nightcafe.studio/blogs/blog/top-20-ai-generated-artworks
(B) https://twitter.com/CitizenPlain/status/1316760510709338112/photo/1
(C)https://www.ettoday.net/news/20210616/2007703.htm
(D) https://github.com/orpatashnik/StyleCLIP
<= only with
text & input
A
C
B
D
Content
- Style Transfer
- GAN & StyleGAN
- Image Manipulation with StyleGAN
- Text Driven Image Manipulation/Generation
- Related Topics
- Applications/Resource List
- Paper List
This Talk
Spirit of some famous methods
Prerequisite
- Mean / Std
- Convolution & Activation
- Loss Function
- Gradient Descent
This Talk
Spirit of some famous methods
Warning
The following pages have some math equations.
However, I will explain them from the idea of the algorithms, not from the equations.
Style Transfer
Before Style Transfer
How to summarize texture?
https://paperswithcode.com/dataset/psu-near-regular-texture-database
Before Style Transfer
How to summarize texture?
Define some handmade feature representation
like color, gradient, frequency...
Then use statistics
Image => Feature Extract => Summarize => Distance
https://paperswithcode.com/dataset/psu-near-regular-texture-database
How to summarize texture?
Image
Feature
Extract
Summarize
Distance
Distance measure for vector/distribution
Manjunath , B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. pattern analysis and machine intelligence , 18 (8), 837IEEE Transactions on 52 842.
Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on pattern analysis and machine intelligence 24.7 (2002): 971-987.
How to summarize texture?
Gabor Filter Bank
\( (H, W, 1) \rightarrow (H, W, f \cdot \theta)\)
Image
Feature
Extract
Summarize
Distance
use \(\mu, \sigma\)
\( (H, W, f \cdot \theta) \rightarrow (2\cdot f \cdot \theta)\)
Distance measure for vector/distribution
Manjunath , B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. pattern analysis and machine intelligence , 18 (8), 837IEEE Transactions on 52 842.
Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on pattern analysis and machine intelligence 24.7 (2002): 971-987.
How to summarize texture?
Gabor Filter Bank
\( (H, W, 1) \rightarrow (H, W, f \cdot \theta)\)
Image
Feature
Extract
Summarize
Distance
use \(\mu, \sigma\)
\( (H, W, f \cdot \theta) \rightarrow (2\cdot f \cdot \theta)\)
Use Histogram
\( (H, W, 1)_{\in \{0,1,...,9\}} \rightarrow\)
Distance measure for vector/distribution
Manjunath , B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. pattern analysis and machine intelligence , 18 (8), 837IEEE Transactions on 52 842.
Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on pattern analysis and machine intelligence 24.7 (2002): 971-987.
9
Rotation Invariant Local Binary Pattern
\( (H, W, 1)_{\in \{0,1,...,255\}} \rightarrow (H, W, 1)_{\in \{0,1,...,9\}}\)
How to summarize texture?
Gabor Filter Bank
\( (H, W, 1) \rightarrow (H, W, f \cdot \theta)\)
Image
Feature
Extract
Summarize
Distance
use \(\mu, \sigma\)
\( (H, W, f \cdot \theta) \rightarrow (2\cdot f \cdot \theta)\)
Use Histogram
\( (H, W, 1)_{\in \{0,1,...,9\}} \rightarrow\)
Distance measure for vector/distribution
Manjunath , B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. pattern analysis and machine intelligence , 18 (8), 837IEEE Transactions on 52 842.
Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on pattern analysis and machine intelligence 24.7 (2002): 971-987.
9
<
\(\geq\)
Thresholding
Rotation Invariant Local Binary Pattern
\( (H, W, 1)_{\in \{0,1,...,255\}} \rightarrow (H, W, 1)_{\in \{0,1,...,9\}}\)
11000000
How to summarize texture?
Gabor Filter Bank
\( (H, W, 1) \rightarrow (H, W, f \cdot \theta)\)
Rotation Invariant Local Binary Pattern
\( (H, W, 1)_{\in \{0,1,...,255\}} \rightarrow (H, W, 1)_{\in \{0,1,...,9\}}\)
Image
Feature
Extract
Summarize
Distance
use \(\mu, \sigma\)
\( (H, W, f \cdot \theta) \rightarrow (2\cdot f \cdot \theta)\)
Use Histogram
\( (H, W, 1)_{\in \{0,1,...,9\}} \rightarrow\)
Distance measure for vector/distribution
Manjunath , B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. pattern analysis and machine intelligence , 18 (8), 837IEEE Transactions on 52 842.
Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on pattern analysis and machine intelligence 24.7 (2002): 971-987.
9
rotation invariant
<
\(\geq\)
Thresholding
<
>
How to summarize data?
Data
Feature
Extract
Describe
Distance
If we have good feature extractor...
Distance measure for vector/distribution
Describe data w/ or w/o statistic...
A Cute Dog Staring You
Feature
Extract
Distance
If we have good feature extractor...
- Use Other Task's Pretrained Weight
- Create It By Yourself
Distance measure for vector/distribution
Describe
Describe data w/ or w/o statistic...
A Cute Dog Staring You
How to summarize data?
Data
Style Transfer
Lin, Tianwei, et al. "Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer." arXiv preprint arXiv:2104.05376 (2021).
Content
Style
Styllized
Objective
Find a stylized image, which has
- Content image's content
- Style image's style
Style Transfer
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
Style Transfer
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
Style Transfer
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
Style Transfer
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
- Image Optimization (Inference \(\equiv\) train:minutes)
Find an image - Model Optimization (Inference:real time; Train:hours)
Find a model can transfer image- Per-Style-Per-Model (PSPM)
Model contain 1 style - Multiple-Style-Per-Model (MSPM)
Model contain n style - Arbitrary-Style-Per-Model (ASPM)
Model contain any style
- Per-Style-Per-Model (PSPM)
Style Transfer
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
- Image Optimization (Inference \(\equiv\) train:minutes)
Find an image - Model Optimization (Inference:real time; Train:hours)
Find a model can transfer image- Per-Style-Per-Model (PSPM)
Model contain 1 style - Multiple-Style-Per-Model (MSPM)
Model contain n style - Arbitrary-Style-Per-Model (ASPM)
Model contain any style
- Per-Style-Per-Model (PSPM)
Style Transfer
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
- Image Optimization (Inference \(\equiv\) train:minutes)
Find an image - Model Optimization (Inference:real time; Train:hours)
Find a model can transfer image- Per-Style-Per-Model (PSPM)
1 style - Multiple-Style-Per-Model (MSPM)
n styles - Arbitrary-Style-Per-Model (ASPM)
any style
- Per-Style-Per-Model (PSPM)
Image style transfer using convolutional neural networks
Notes
- Arxiv : 1508.06576
- First paper for "Neural" Style Transfer
- Get the result by optimize the image
- Plenty of later papers use their loss function
- Cost minutes to generate an image
- Cited by 3267 at 2021 Nov
Feature
Extract
Distance
If we have good feature extractor...
- Use Other Task's Pretrained Weight
- Create It By Yourself
Distance measure for vector/distribution
Describe
Describe data w/ or w/o statistic...
A Cute Dog Staring You
Data
VGG
(A Pretrained Model)
\(\mathcal{L}_{content}\) : Feature tensor close to content image's feature tensor
\(\mathcal{L}_{style}\) : Stat(feature) close to style image's stat(feature)
\(\mathcal{L}_{total} = \mathcal{L}_{content} + \lambda \mathcal{L}_{style}\)
\(\hat{I}\)
VGG
(A Pretrained Model)
\(\mathcal{L}_{content}\)=( - )\(^2\)
\(\mathcal{L}_{content}\) : Feature tensor close to content image's feature tensor
\(\mathcal{L}_{style}\) : Stat(feature) close to style image's stat(feature)
\(\mathcal{L}_{total} = \mathcal{L}_{content} + \lambda \mathcal{L}_{style}\)
\(\hat{I}\)
\(\hat{I}\)
VGG
(A Pretrained Model)
\(\mathcal{L}_{style}\)=(G( )-G( ))\(^2\)
\(\mathcal{L}_{content}\)=( - )\(^2\)
\(\mathcal{L}_{content}\) : Feature tensor close to content image's feature tensor
\(\mathcal{L}_{style}\) : Stat(feature) close to style image's stat(feature)
\(\mathcal{L}_{total} = \mathcal{L}_{content} + \lambda \mathcal{L}_{style}\)
\(\hat{I}\)
VGG
(A Pretrained Model)
\(\mathcal{L}_{style}\)=(G( )-G( ))\(^2\)
\(\mathcal{L}_{content}\)=( - )\(^2\)
\(\mathcal{L}_{content}\) : Feature tensor close to content image's feature tensor
\(\mathcal{L}_{style}\) : Stat(feature) close to style image's stat(feature)
\(\mathcal{L}_{total} = \mathcal{L}_{content} + \lambda \mathcal{L}_{style}\)
result \(\leftarrow argmin_{\color{red}\hat{I}}\mathcal{L}_{total}({\color{red}\hat{I}})\)
\(\hat{I}\)
VGG
(A Pretrained Model)
\(\mathcal{L}_{style}\)=(G( )-G( ))\(^2\)
\(\mathcal{L}_{content}\)=( - )\(^2\)
\(\mathcal{L}_{content}\) : Feature tensor close to content image's feature tensor
\(\mathcal{L}_{style}\) : Stat(feature) close to style image's stat(feature)
\(\mathcal{L}_{total} = \mathcal{L}_{content} + \lambda \mathcal{L}_{style}\)
result \(\leftarrow argmin_{\color{red}\hat{I}}\mathcal{L}_{total}({\color{red}\hat{I}})\)
$$\hat{I} = \hat{I} - \alpha\frac{\partial \mathcal{L}_{total}}{\partial \hat{I}}$$
\(\hat{I}\)
VGG
(A Pretrained Model)
\(\mathcal{L}_{style}\)=(G( )-G( ))\(^2\)
\(\mathcal{L}_{content}\)=( - )\(^2\)
\(\mathcal{L}_{content}\) : Feature tensor close to content image's feature tensor
\(\mathcal{L}_{style}\) : Stat(feature) close to style image's stat(feature)
\(\mathcal{L}_{total} = \mathcal{L}_{content} + \lambda \mathcal{L}_{style}\)
$$F \in R^{C \times X \times Y}, G(F) \in R^{C \times C}$$
$$G(F)_{c1, c2} = \frac{1}{X\cdot Y}\sum_{x, y}[F_{c1,x,y} \cdot F_{c2,x,y}]$$
\(G\) : gram matrix
result \(\leftarrow argmin_{\color{red}\hat{I}}\mathcal{L}_{total}({\color{red}\hat{I}})\)
$$\hat{I} = \hat{I} - \alpha\frac{\partial \mathcal{L}_{total}}{\partial \hat{I}}$$
Get more abstract result while use deeper layer for content loss
Their Result
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. “Perceptual Losses for Real-Time Style Transfer and Super-Resolution.” arXiv preprint arXiv:1603.08155 (2016).
Notes
- Arxiv : 1603.08155
- Get the result by optimize a model
- Thier research has 2 branch :
- style transfer
- super resolution
- Plenty of later papers use the term "Perceptual"
- Per-Style-Per-Model(PSPM)
- Real time while inference
- Cited by 5962 at 2021 Nov
\(\hat{I}\)
Perceptual
\(\hat{I}\)
prev : \(argmin_{{\color{red}\hat{I}}}\mathcal{L}_{total}({\color{red}\hat{I}})\)
Perceptual
\(f_W({\color{blue}I})\)
Model \(f_W\)
prev : \(argmin_{{\color{red}\hat{I}}}\mathcal{L}_{total}({\color{red}\hat{I}})\)
this: \(argmin_{f_W}\sum_{{\color{blue}I}\in dataset}\mathcal{L}_{total}(f_W({\color{blue}I}))\)
A learned representation for artistic style
Notes
- Arxiv : 1610.07629
- Get the result by optimizing a model
- Multiple-Style-Per-Model (MSPM)
- Use conditional instance normalization(CIN) for multiple style transfer
- The standard setting contain 32 styles, each style contain about 0.2% total parameters.
- Real time while inference
- Cited by 727 at 2021 Nov
Before A Learned Representation For Artistic Style
Color Distrbution Matching
Source
Stat(R)
Stat(G)
Stat(B)
Target
Stat(R)
Stat(G)
Stat(B)
Before A Learned Representation For Artistic Style
Color Distrbution Matching
Before A Learned Representation For Artistic Style
Color Distrbution Matching
Target
Stat(R)
Stat(G)
Stat(B)
Normalize
(\(\mu=0, \sigma=1\))
(\(\mu=0, \sigma=1\))
(\(\mu=0, \sigma=1\))
Source
Stat(R)
Stat(G)
Stat(B)
A Learned Representation For Artistic Style
Each Style Use a \((\gamma, \beta)\) pair
Target
Stat(R)
Stat(G)
Stat(B)
Normalize
(\(\mu=0, \sigma=1\))
(\(\mu=0, \sigma=1\))
(\(\mu=0, \sigma=1\))
Source
Stat(R)
Stat(G)
Stat(B)
\(f_W({\color{blue}I})\)
Model \(f_W\)
prev
Conv
\(n \times \)
Act
Conv
\(n \times \)
Act
\(f_W({\color{blue}I})\)
Model \(f_W\)
prev
Conv
\(n \times \)
Act
This
\(S_2\)
\(S_1\)
Interpolate
\(S\) =
\(\alpha S_1+(1-\alpha)S_2\)
\(S_2\)
\(S_1\)
Interpolate
\(S_3\)
\(S_4\)
Exploring the structure of a real-time, arbitrary neural artistic stylization network
Notes
- Arxiv : 1705.06830
- Get the result by optimizing a model
- Arbitrary-Style-Per-Model (ASPM)
- It generalized CIN for adaptive to arbitrary Style
- Real time to generate an image with gpu
- Cited by 180 at 2021 Nov
Prev Work
Style Prediction Network
This Work
Architecture
Small Recap
Papers:
- 1508.06576 Image Optimization
- 1603.08155 Per-Style-Per-Model (PSPM)
- 1610.07629 Multiple-Style-Per-Model (MSPM)
- 1705.06830 Arbitrary-Style-Per-Model (ASPM)
About half year a big improve
Small Recap
Papers:
- 1508.06576 Image Optimization
- 1603.08155 Per-Style-Per-Model (PSPM)
- 1610.07629 Multiple-Style-Per-Model (MSPM)
- 1705.06830 Arbitrary-Style-Per-Model (ASPM)
About half year a big improve
Not Enough?
(Methods up to March 2018, Cited by 335 at Nov 2021)
Jing, Yongcheng, et al. "Neural Style Transfer: A Review." arXiv preprint arXiv:1705.04058 (2017).
My Medium
類神經影像藝術風格轉換系列筆記-基礎
GAN & StyleGAN
StyleGAN
Why Named StyleGAN?
Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." arXiv preprint arXiv:1812.04948 (2018).
GAN
Data
Feature
Extract
Distance
If we have good feature extractor...
- Use Other Task's Pretrained Weight
- Create It By Yourself
Distance measure for vector/distribution
Describe
Describe data w/ or w/o statistic...
A Man With Curly Hair
GAN & StyleGAN
GAN & StyleGAN
Notes :
- Input for conv is a constant tensor
- Apply AdaIN
- Add random noise while inference & training
(stochastic items: hair, freckles, skin pores)
StyleGAN
\(w \in \mathcal{W}\)
StyleMixing
Interpolate
1:10~2:07
StyleGAN
Cost
StyleGAN
Solve Artifact (00:30~1:30)
StyleGAN2
Solve Interpoloate Artifact
StyleGAN3
Tero Karras
Un-Official Forest
Image Manipulation with StyleGAN
Image Manipulation with StyleGAN
Methods shamelessly taken from this video
Image Manipulation with StyleGAN
Warning: We skip a lot
Warning: We skip a lot
Warning: We skip a lot
Data
Feature
Extract
Distance
If we have good feature extractor...
- Use Other Task's Pretrained Weight
- Create It By Yourself
Distance measure for vector/distribution
Describe
Describe data w/ or w/o statistic...
A Man With Curly Hair
Image Manipulation with StyleGAN
Modify
pretrained weight / hidden output
with smart measure
Specific
Image Manipulation with StyleGAN
Contents
- GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
Add/Remove semantic of GAN's output - Semantic Photo Manipulation with a Generative Image Prior
Edit Your Own Photo - Rewriting a Deep Generative Model
Edit The Generative Model(like roof=> tree)
Image Manipulation with StyleGAN
Contents
- GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
Add/Remove semantic of GAN's output - Semantic Photo Manipulation with a Generative Image Prior
Edit Your Own Photo - Rewriting a Deep Generative Model
Edit The Generative Model (like roof=> tree)
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
Image generated by GAN
Output by zeroing some activation
Step 1 : Which hidden channels have high correlation to segmentation map?
Step 1 : Which hidden channels have high correlation to segmentation map?
Step 2 : Edit these channels (to constant, to 0)
Notes
It need segment model or manual label
Step 1 : Which hidden channels have high correlation to segmentation map?
Step 2 : Edit these channels (to constant, to 0)
Official GIFs
Semantic Photo Manipulation with a Generative Image Prior
Find best matching latents in GAN.
Bad result :(
Find best matching latents in GAN
Allow slight weight modification
Nice :)
Use previous work's editing skill
00:27~00:55
\(W\) : weight of layer \(L \)
\(k\) : normal input at layer \(L\)
\(k_*\) : selected input at layer \(L\)
\(v_*\): desired output for \(k_*\) at layer \(L\)
normal output should not change
change source to target
go "Example Results"
Text Driven Image Manipulation/Generation
- OpenAI : CLIP
- StyleCLIP
- CLIPDraw & StyleCLIPDraw
- My Method : StyleTransferCLIP
- OpenAI : Dall E
Contents
CLIP
Connecting Text and Images
Radford, Alec, et al. "Learning transferable visual models from natural language supervision." arXiv preprint arXiv:2103.00020 (2021).
dog
cat
hen
bee
Traditional Classification
CLIP
Connecting Text and Images
Radford, Alec, et al. "Learning transferable visual models from natural language supervision." arXiv preprint arXiv:2103.00020 (2021).
CLIP (Contrastive Language–Image Pre-training)
dog
cat
hen
bee
Traditional Classification
# https://github.com/openai/CLIP#usage
import torch
import clip
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
logits_per_image, logits_per_text = model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
StyleCLIP
StyleCLIPDraw
Image Manipulation/Generation with
1 Image, 1 Text
Use CLIP Encoder
\(-CLIP_{I}(img)\cdot CLIP_{T}(text)=\mathcal{L}_{CLIP}\)
"...."
2021 Sep 09
2021 Nov 12
StyleCLIP Author : A Newstar
2021 Dec 08
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery. (2021 Mar)
Patashnik, Or, et al. "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery." arXiv e-prints (2021): arXiv-2103.
In Style Transfer/In StyleCLIP
- Image Optimization
Latent Optimization - Model Optimization
- Per-Style-Per-Model
Latent Mapper - Multiple-Style-Per-Model
No - Arbitrary-Style-Per-Model
Global Directions
- Per-Style-Per-Model
In Style Transfer/In StyleCLIP
- Image Optimization
Latent Optimization - Model Optimization
- Per-Style-Per-Model
Latent Mapper (skip) - Multiple-Style-Per-Model
No - Arbitrary-Style-Per-Model
Global Directions (skip)
- Per-Style-Per-Model
In Style Transfer/In StyleCLIP
- Image Optimization
Latent Optimization - Model Optimization
- Per-Style-Per-Model
Latent Mapper (skip) - Multiple-Style-Per-Model
No - Arbitrary-Style-Per-Model
Global Directions (skip)
- Per-Style-Per-Model
StyleCLIP(GAN Inv with e4e + official mapper)
\(w\)
"Curly Hair"
Genertate
Latent
StyleGan
(G)
\(w_s\)
StyleGan
Get reconstructed latent : \(w_s\)
Latent optimization
Face Regonition
Same Person?
\(\mathcal{L}_{ID}\)
Same Description?
\(\mathcal{L}_{CLIP}\)
\(\textcolor{red}{w^*} = argmin_{\color{red} w}\mathcal{L}_{CLIP}+\lambda_{L2}||\textcolor{red}{w}-w_s||_2 + \lambda_{ID}\mathcal{L}_{ID}\)
G(\(w\))
CLIPDraw (2021 Jun) & StyleCLIPDraw (2021 Nov)
\(\mathcal{L}_{total} = \mathcal{L}_{content}+ \beta\mathcal{L}_{style}\)
CLIPDraw : \(\beta = 0\)
StyleCLIPDraw : \(\beta > 0\)
Schaldenbrand, Peter, Zhixuan Liu, and Jean Oh. "StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Synthesis." arXiv preprint arXiv:2111.03133 (2021).
CLIPDraw (2021 Jun) & StyleCLIPDraw (2021 Nov)
In Style Transfer/CLIPDraw
- Image Optimization
Line Parameter Optimization - Model Optimization
- Per-Style-Per-Model
No - Multiple-Style-Per-Model
No - Arbitrary-Style-Per-Model
No
- Per-Style-Per-Model
Before CLIPDraw
Gradient decent from loss to curve's parameters is possible, i.e.
$$\frac{\partial \mathcal{L}}{\partial P_i}$$can be computed
Parameter for control points :
position, rgba, thickness
StyleCLIPDraw
If no Augmentation, the result is bad.
CLIPDraw Results
The Eiffel Tower
StyleCLIPDraw Results
My Method : StyleTransferCLIP
edit style embedding
\(E_{initial} = SP(S)\)
with \(\mathcal{L}_{CLIP}\)
Input Image
(C)
Style Image
(S)
Output Image
NST(C, \(E_{initial}\))
CLIP Result
Next pages
E
$$argmin_{\red E}(\mathcal{L}_{CLIP}(NST(C,{\red E}), Text))$$
My Experiment on Neural Style Transfer
My Experiment on Neural Style Transfer with Augmentation
You can play my method with replicate.ai
# https://github.com/huggingface/tokenizers
output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
print(output.tokens)
# ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]
# string => tokens
# token => idx => embedding
Tokenize text
# https://github.com/huggingface/tokenizers
output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
print(output.tokens)
# ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]
# string => tokens
# token => idx => embedding
Tokenize text
Autoregressive Model (Next token prediction)
$$P_{\theta}(\textbf{x})=\Pi_{i=1}^{n} P_{\theta}(x_i|x_1, x_2, \dots, x_{i-1})$$
# https://github.com/huggingface/tokenizers
output = tokenizer.encode("Hello, y'all! How are you 😁 ?")
print(output.tokens)
# ["Hello", ",", "y", "'", "all", "!", "How", "are", "you", "[UNK]", "?"]
# string => tokens
# token => idx => embedding
Tokenize text
Autoregressive Model (Next token prediction)
$$P_{\theta}(\textbf{x})=\Pi_{i=1}^{n} P_{\theta}(x_i|x_1, x_2, \dots, x_{i-1})$$
\(P_{\theta}(\text{"sunny"}|\text{"The weather is"})\)
\(P_{\theta}(\text{"cookie"}|\text{"The weather is"})\)
\(P_{\theta}(\text{"furry"}|\text{"The weather is"})\)
VQ-VAE can tokenize image to \(n \times n\) tokens
Image Tokenization
VQ-VAE can tokenize image to \(n \times n\) tokens
Autoregressive Model (Next token prediction)
$$P_{\theta}(\textbf{x})=\Pi_{i=1}^{n} P_{\theta}(x_i|x_1, x_2, \dots, x_{i-1})$$
Image Tokenization
Autoregressive Model (Next token prediction)
"a dog is watching you"
\(\color{green}x_{t_1}, x_{t_2}, \dots, x_{t_n}\)
\(\color{blue}x_{i_1}, x_{i_2}, \dots, x_{i_m}\)
$$P_{\theta}(\textbf{x})=\Pi_{i=1}^{n} P_{\theta}(x_i|x_1, x_2, \dots, x_{i-1})$$
Autoregressive Model (Next token prediction)
$$ P_{\theta}({\color{green} {x_t}}, {\color{blue}{x_i}}) = \Pi_{p=1}^{m}P_{\theta}({\color{blue}x_{i_p}}|{\color{green} x_{t_1}, x_{t_2}, \dots, x_{t_n}},{\color{blue} x_{i_1}, x_{i_2}, \dots, x_{i_p-1}})$$
Dall E
"a dog is watching you"
\(\color{green}x_{t_1}, x_{t_2}, \dots, x_{t_n}\)
\(\color{blue}x_{i_1}, x_{i_2}, \dots, x_{i_m}\)
$$P_{\theta}(\textbf{x})=\Pi_{i=1}^{n} P_{\theta}(x_i|x_1, x_2, \dots, x_{i-1})$$
Core Concept
- Image to image token with VQ-VAE
- Text to text token
- Concat them and make this become an next token prediction problem.
Sad Things
- 12-billion parameter
(\(\approx\) 2264 \(\times\) efficient-B0) - 250 milllion (image, text) pairs
(\(\approx\)18 \(\times\) ImageNet)
Core Concept
- Image to image token with VQ-VAE
- Text to text token
- Concat them and make this become an next token prediction problem.
An Explain
Not Enough?
Paper & Code
Not Enough?
Paper & Code
Takeaway
- Style Transfer
- Loss function
- Image Optimization
- Model Optimization
- CIN
- StyleGAN
- Borrow from style transfer
- Add noise
- Official Branch StyleGAN, StyleGAN2, StyleGAN-ADA, StyleGAN3
- Image Manipulation with StyleGAN
- Modify weight / activation with smart way
- Text Driven Image Manipulation/Genearation
- CLIP Method & CLIP Loss
- Dall E : Text & Image Next Token Prediction
Related Topics
2021 Jan
2021 Jan
Edit model without additional image
StyleGAN-NADA (2021 Aug)
Next work of StyleCLIP
2021 Dec
It can train a forward model in about 1 min
An old method : StarGAN(2017)
Choi, Yunjey, et al. "StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation." arXiv e-prints (2017): arXiv-1711.
VQ-GAN (2020 Dec)
a parallel method to DALL E
2021 Nov
2020 Apr
Novel view synthesis
Semantic photo manipulation (This Slide)
Facial and Body Reenactment
Relighting
Free-Viewpoint Video
Photo-realistic avatars for AR/VR
2021 Dec
2021 Dec
Applications
Resource List
Paper List
Style Transfer
-
Manjunath , B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. pattern analysis and machine intelligence , 18 (8), 837IEEE Transactions on 52 842.
-
Ojala, Timo, Matti Pietikainen, and Topi Maenpaa. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns." IEEE Transactions on pattern analysis and machine intelligence 24.7 (2002): 971-987.
- Lin, Tianwei, et al. "Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality Artistic Style Transfer." arXiv preprint arXiv:2104.05376 (2021).
- Jing, Yongcheng, et al. "Neural Style Transfer: A Review." _arXiv preprint arXiv:1705.04058_ (2017).
- Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "Image style transfer using convolutional neural networks." _Proceedings of the IEEE conference on computer vision and pattern recognition_. 2016.
- Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual Losses for Real-Time Style Transfer and Super-Resolution." arXiv preprint arXiv:1603.08155 (2016).
- Dumoulin, Vincent, Jonathon Shlens, and Manjunath Kudlur. "A learned representation for artistic style." _arXiv preprint arXiv:1610.07629_ (2016).
- Ghiasi, Golnaz, et al. "Exploring the structure of a real-time, arbitrary neural artistic stylization network." _arXiv preprint arXiv:1705.06830_ (2017).
GAN & StyleGAN & StyleGAN Manipulation
- Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." _arXiv preprint arXiv:1812.04948_ (2018).
- Karras, Tero, et al. "Analyzing and Improving the Image Quality of StyleGAN." arXiv preprint arXiv:1912.04958 (2019).
- Karras, Tero, et al. "Alias-Free Generative Adversarial Networks." _arXiv preprint arXiv:2106.12423_ (2021).
-
Bau, David, et al. "Gan dissection: Visualizing and understanding generative adversarial networks." _arXiv preprint arXiv:1811.10597_ (2018).
-
Bau, David, et al. "Semantic photo manipulation with a generative image prior." _arXiv preprint arXiv:2005.07727_ (2020).
-
Bau, David, et al. "Rewriting a deep generative model." _European Conference on Computer Vision_. Springer, Cham, 2020.
Text Driven Image Manipulation/Genearation
-
Radford, Alec, et al. "Learning transferable visual models from natural language supervision." _arXiv preprint arXiv:2103.00020_ (2021).
-
Patashnik, Or, et al. "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery." arXiv preprint arXiv:2103.17249 (2021).
-
Frans, Kevin, L. B. Soros, and Olaf Witkowski. "Clipdraw: Exploring text-to-drawing synthesis through language-image encoders." arXiv preprint arXiv:2106.14843 (2021).
-
Schaldenbrand, Peter, Zhixuan Liu, and Jean Oh. "StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Synthesis." arXiv preprint arXiv:2111.03133 (2021).
-
Ramesh, Aditya, et al. "Zero-shot text-to-image generation." _arXiv preprint arXiv:2102.12092_ (2021).
Thanks
If have any feedback, please contact me
changethewhat+NST@gmail.com
yidar+NST@aiacademy.tw
From Style Transfer to Text-Driven Image Manipulation
By sin_dar_soup
From Style Transfer to Text-Driven Image Manipulation
- 526