\text{Chapter I}
\text{Chapter I}
\text{Chapter I}
\text{Chapter I}
\text{Express speed of sound, }330 \mathrm{~m} / \mathrm{s}\text{ in miles}/ \mathrm{h} \\
(1 \text{ mile}=1609 \mathrm{~m})
\text{Problem 1}
\text{Express speed of sound, }330 \mathrm{~m} / \mathrm{s}\text{ in miles}/ \mathrm{h} \\
(1 \text{ mile}=1609 \mathrm{~m})
\text{Answer C}
\text{Problem 1}

$$\left(1\right.\text{ nano } \left.=10^{-9}\right)$$

$$\text{1 shake} =10^{-8}\text{ seconds.                                              } $$

$$\text{Find out how many nano seconds (ns) are there in 1 shake.}$$

\text{Problem 2}

$$\left(1\right.\text{ nano } \left.=10^{-9}\right)$$

$$\text{1 shake} =10^{-8}\text{ seconds.                                              } $$

$$\text{Find out how many nano seconds (ns) are there in 1 shake.}$$

\text{Problem 2}
\text{Answer E}

$$\text{How many molecules of water are there in a cup containing } 250 \mathrm{~cm}^3 \text{ of water?}$$

$$\text{Molecular mass of $\mathrm{H}_2 \mathrm{O}=18 \mathrm{~g} / \mathrm{mole}$}$$

$$\text{Density of water $=1.0 \mathrm{~g} / \mathrm{cm}^3$}$$

$$\text{Avogadro s number $=6.02 \times 10^{23} \mathrm{molecules} / \mathrm{mole}$}$$

$$\text{A) $6.0 \times 10^{23}$ }$$

$$\text{B) $8.4 \times 10^{24}$ }$$

$$\text{C) $1.9 \times 10^{26}$}$$

$$\text{D) $3.7 \times 10^{28}$}$$

$$\text{E) $2.5 \times 10^3$}$$

\text{Problem 3}

$$\text{How many molecules of water are there in a cup containing } 250 \mathrm{~cm}^3 \text{ of water?}$$

$$\text{Molecular mass of $\mathrm{H}_2 \mathrm{O}=18 \mathrm{~g} / \mathrm{mole}$}$$

$$\text{Density of water $=1.0 \mathrm{~g} / \mathrm{cm}^3$}$$

$$\text{Avogadro s number $=6.02 \times 10^{23} \mathrm{molecules} / \mathrm{mole}$}$$

$$\text{A) $6.0 \times 10^{23}$ }$$

$$\text{B) $8.4 \times 10^{24}$ }$$

$$\text{C) $1.9 \times 10^{26}$}$$

$$\text{D) $3.7 \times 10^{28}$}$$

$$\text{E) $2.5 \times 10^3$}$$

\text{Problem 3}
\text{Answer B }
\text{Problem 4}
\text{Problem 4}
\text{Answer A}
\text{Problem 5}
\text{Problem 5}
\text{Answer D}
\displaystyle [v]=[A][t]^2\text{ and }[v]=\frac{[B]}{[A]}[t]
\displaystyle LT^{-1}=[A]T^2\text{ and }[v]=\frac{[B]}{[A]}T
\text{In a sum or an equality, all the terms have the same dimension}
\displaystyle LT^{-1}=[A]T^2
\displaystyle LT^{-1}=\frac{[B]}{[A]}T
\text{ and }
\Rightarrow
\displaystyle LT^{-3}=[A]
\Rightarrow
\displaystyle [A]LT^{-2}=[B]
\displaystyle L^2T^{-5}=[B]
\Rightarrow
\text{The transverse displacement of an oscillating string is given by } y=y_m \cos(\omega t+\phi)
\text{where }y,\text{ is in cm and }t \text{ in ms}.
\text{What is the dimension of }\omega?
\text{Problem 7}
\text{The transverse displacement of an oscillating string is given by } y=y_m \cos(\omega t+\phi)
\text{where }y,\text{ is in cm and }t \text{ in ms}.
\text{What is the dimension of }\omega?
\text{The term inside a trigonometric function has no dimension. Therefore, we can write:}
[\omega][t]=1\Rightarrow [\omega]=T^{-1}
\text{Problem 7}
\text{Problem 8}
\text{Problem 8}
\text{Answer C}
\text{Problem 9}
\text{Problem 9}
\text{Answer E}
\text{Problem 10}
\text{Answer B}
\text{Problem 11}
\text{Problem 11}
\text{Answer D}

Copy of deck

By smstry

Copy of deck

  • 94