Linear representations and random orbit model

Faculty of Science, University of Copenhagen

Stefan Sommer

Department of Computer Science, University of Copenhagen

\( \phi \)

Statistical Shape models

Session 1: (L 9-9:45) Shape analysis and actions of the  diffeomorphism group

Session 2: (E 10-10:45) Landmark analysis in Theano Geometry

Session 3: (L 11-11:45) Linear representations and random orbit model

Session 4: (E 12:30-13:15) Landmarks statistics in Theano Geometry

Session 5: (L 13:30-14:15) Shape spaces of images, curves and surfaces

Session 6: (E 14:30-15:15) Analysis of continuous shapes

 

Shape Matching

E_{s_0,s_1}(\phi)=R(\phi)+\frac1\lambda S(\phi.s_0,s_1)

\( \phi\in\mathrm{Diff}(\Omega) \) diffeomorphism of domain \(\Omega\)

\( \phi \)

Variational problem to find optimal \(\phi\in G\):

Group and quotient

Riemannian View

R(\phi_t)=\int_0^T\|\partial_t \phi_t\|_{\phi_t}^2dt

\( \phi_t:[0,T]\to\mathrm{Diff}(\Omega) \) path of diffeomorphisms (parameter t)

\mathrm{Diff}(\Omega)
\mathrm{Id}_{\mathrm{Diff}(\Omega)}
\varphi_t

Flow Equations

Constructing diffeomorphisms:

 

Forward flow:

\[ \frac{d}{dt}\phi(x,t)= v(\phi(x,t),t) ,\ \forall x\in\Omega \]

\(\phi(x,0)=x\)

\(\phi_t\in G=\mathrm{Diff}(\Omega)\)

 

\(v_t\) is a vector field on \(\Omega\): \(v\in V\subset \mathcal{X}\)

It is the Eulerian velocity that controls the flow

 

Variational Problem

The family \(v_t\), \(t\in [0,T]\) determines the flow

 

Variational problem:

     \( E_{s_0,s_1}(\phi)=\mathrm{min}_{\phi_t}R(\phi_t)+\frac1\lambda S(\phi_T.s_0,s_1) \)

     \(R(\phi_t):=\int_0^T\|\partial_t \phi_t\|_{\phi_t}^2dt\), \(v_t=\partial_t\phi_t\circ\phi_t^{-1}\)

 

So we need a norm on \(V\) for defining \(\|\partial_t\phi_t\|_{\phi_t}=\|v_t\|\)

Velocity Fields

Norm on \(V\) is defined via a Reproducible Kernel Hilbert Space (RKHS) structure

 

Velocity \(v\)

Momentum \(m=Lv\) (recall: \(p\) for landmarks)

\(L\) is the momentum operator \(L:V\to V^*\)

 

Kernel \(K\) is the inverse momentum: \(K=L^{-1}\)

\(K\) is as well a matrix-valued function on \(\Omega\times\Omega\): \[K: \Omega\times\Omega\to\mathbb{R}^{d\times d}\]

e.g. \(K(x,y)=\alpha e^{-\frac{\|x-y\|^2}{2\sigma^2}}\)

RKHS

Kernel \(K\) is the inverse momentum: \(K=L^{-1}\)

\(K\) is as well a matrix-valued function on \(\Omega\times\Omega\): \[K: \Omega\times\Omega\to\mathbb{R}^{d\times d}\]

e.g. \(K(x,y)=\alpha e^{-\frac{\|x-y\|^2}{2\sigma^2}}\)

 

For \(a\in\mathbb{R}^d\), \(K(\cdot,x)a\in V\)

\[\langle K(\cdot,x)a,K(\cdot,y)b \rangle= a^TK(x,y)b \]

 

\(V\) is the completion of finite linear combination of \(K(\cdot,x)a\)

\(V\) is embedded in \(L^2(\Omega,\mathbb{R}^d)\)

RKHS

\(V\) is the completion of finite linear combination of \(K(\cdot,x)a\)

\(V\) is embedded in \(L^2(\Omega,\mathbb{R}^d)\)

 

vector \(w\in L^2(\Omega,\mathbb{R}^d)\) gives covector

\(v\mapsto\int_\Omega w(x)^Tv(x)dx\)

 

velocity vectors \(v_t\) are often smooth

momenta \(m_t=Lv_t\) are often rough

e.g. Dirac deltas:

    \(v_t=\sum_{i=1}^NK(\cdot,x_i)a_i\)

    \(m_t=\sum_{i=1}^Na_i\otimes\delta_{x_i}(\cdot)\)  i.e. landmark momenta \(p_i=a_i\otimes\delta_{x_i}(\cdot)\)

Smooth vs. Rough

Geodesic Equation

The norm \(\|\partial_t\phi_t\|_{\phi_t}^2\) determines a Riemannian metric (that's why we draw \(G\) curved)

 

Riemannian geodesics, length/energy minimizing:

\[\phi_t=\mathrm{argmin}_{\phi_t}\int_0^T\|\partial_t\phi_t\|_{\phi_t}^2dt\]

 

\(v_0=\partial_t\phi_t|_{t=0}\) determines evolution

 

\(\mathrm{Exp}:V\to G\) endpoint map

\(\mathrm{Log}:G\to V\) initial velocity map

G=\mathrm{Diff}(\Omega)
\mathrm{Id}_{\mathrm{Diff}(\Omega)}
\varphi_t

Shape Geodesics

\(\pi\) is a Riemannian submersion

it induces a Riemannian metric on \(\mathcal{S}\)

 

Geodesics on \(\mathcal{S}\) lift to

    horizontal geodesics on \(G\)

Horizontal geodesics on \(G\)

    project to geodesics on \(\mathcal{S}\)

 

Those were the landmark geodesics

But we can do this for any shape space

 

Exp/Log maps are defined on \(\mathcal{S}\) as well

Random Orbit

\(V\) is a vector space (infinite dimensional)

We can perform regular statistics on \(V\)

 

Normal distribution \(N(0,\Sigma)\) maps to distribution \(\mathrm{Exp}_*N(0,\Sigma)\) on \(G\) - random orbits

 

Data \(s_1,\ldots,s_N\) can be analysed

in \(V\): \(v_i=\mathrm{Log}(s_i)\)

G=\mathrm{Diff}(\Omega)
\mathrm{Id}_{\mathrm{Diff}(\Omega)}
\varphi_t
\mathrm{Exp}:V\to

Statistics

Template estimation (mean shape/image):

\[s_0=\mathrm{argmin}_{s\in\mathcal{S}}\sum_{i=1}^nd(s,s_i)^2\]

Geodesic distance on \(\mathcal{S}\):

\[d(s,s_i)=\argmin_{\phi_t,\phi_T.s=s_i}\int_0^T\|v_t\|^2dt\]

 

Tangent space Principal Component Analysis:

\[\mathrm{PCA}(\mathrm{Log}(s_0,s_1),\ldots,\mathrm{Log}(s_0,s_n))\]

\partial_t \phi_t = F(\phi_t)\ \to\ d\phi_t=F(\phi_t)dt\color{blue}{+\sigma(\phi_t) dW_t}
\mathrm{Diff}(\Omega)
\mathrm{Id}_{\mathrm{Diff}(\Omega)}
\phi_t

Stochastic Flows

e.g. Riemannian Brownian motion

Landmark Statistics in Theano

Exercise session:

  • open notebook courses/shape19-E2.ipynb
  • sample random initial momenta and forward integrate to create a distribution of shapes (replace example code that samples from a Riemannian Brownian motion)
  • ​​find Frechet mean of the distribution
  • perform PCA on landmark tangent space

 

hint: use a low number of landmarks to reduce computation time

Linear representations and random orbit model

By Stefan Sommer

Linear representations and random orbit model

  • 322