A Visual Tour of PLONK
Suyash Bagad
Equations to Arithmetic Circuits
Equation
I claim that I know the solutions and they are
How do I prove that I know the solutions without revealing them? A zero-knowledge proof!
Translate the equation to a circuit
Equations to Arithmetic Circuits
\(x\)
\(\ast\)
\(\ast\)
\(-23\)
\(\ast\)
\(\ast\)
\(142\)
\(+\)
\(+\)
\(120\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(a_2\)
\(a_1\)
\(a_0\)
\(c_3\)
\(c_5\)
\(c_4\)
\(c_6\)
\(c_7\)
\(c_8\)
\(a_9\)
\(a_3\)
\(a_5\)
\(a_4\)
\(a_6\)
\(a_7\)
\(a_8\)
\(b_8\)
\(b_7\)
\(b_4\)
\(b_6\)
\(b_5\)
\(b_3\)
Equations to Arithmetic Circuits
\(x\)
\(\ast\)
\(\ast\)
\(-23\)
\(\ast\)
\(\ast\)
\(142\)
\(+\)
\(+\)
\(120\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(a_2\)
\(a_1\)
\(a_0\)
\(c_3\)
\(c_5\)
\(c_4\)
\(c_6\)
\(c_7\)
\(c_8\)
\(a_9\)
\(a_3\)
\(a_5\)
\(a_4\)
\(a_6\)
\(a_7\)
\(a_8\)
\(b_8\)
\(b_7\)
\(b_4\)
\(b_6\)
\(b_5\)
\(b_3\)
For \(i\)-th gate where \(i \in \{0, 1, \dots, 9\}\), we can write
Equations to Arithmetic Circuits
\(x\)
\(\ast\)
\(\ast\)
\(-23\)
\(\ast\)
\(\ast\)
\(142\)
\(+\)
\(+\)
\(120\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(a_2\)
\(a_1\)
\(a_0\)
\(c_3\)
\(c_5\)
\(c_4\)
\(c_6\)
\(c_7\)
\(c_8\)
\(a_9\)
\(a_3\)
\(a_5\)
\(a_4\)
\(a_6\)
\(a_7\)
\(a_8\)
\(b_8\)
\(b_7\)
\(b_4\)
\(b_6\)
\(b_5\)
\(b_3\)
A constant-gate for \(i = 0,\) set \(Q_{L_i} = 1, \ Q_{C_i} = -142\)
Equations to Arithmetic Circuits
\(x\)
\(\ast\)
\(\ast\)
\(-23\)
\(\ast\)
\(\ast\)
\(142\)
\(+\)
\(+\)
\(120\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(a_2\)
\(a_1\)
\(a_0\)
\(c_3\)
\(c_5\)
\(c_4\)
\(c_6\)
\(c_7\)
\(c_8\)
\(a_9\)
\(a_3\)
\(a_5\)
\(a_4\)
\(a_6\)
\(a_7\)
\(a_8\)
\(b_8\)
\(b_7\)
\(b_4\)
\(b_6\)
\(b_5\)
\(b_3\)
A multiplication-gate for \(i =5,\) set \(Q_{O_i} = -1, \ Q_{M_i} = 1\)
Equations to Arithmetic Circuits
\(x\)
\(\ast\)
\(\ast\)
\(-23\)
\(\ast\)
\(\ast\)
\(142\)
\(+\)
\(+\)
\(120\)
\(0\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
\(6\)
\(7\)
\(8\)
\(9\)
\(a_2\)
\(a_1\)
\(a_0\)
\(c_3\)
\(c_5\)
\(c_4\)
\(c_6\)
\(c_7\)
\(c_8\)
\(a_9\)
\(a_3\)
\(a_5\)
\(a_4\)
\(a_6\)
\(a_7\)
\(a_8\)
\(b_8\)
\(b_7\)
\(b_4\)
\(b_6\)
\(b_5\)
\(b_3\)
An addition-gate for \(i = 8\)
Towards Polynomials
\(Q_L\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
\(Q_R\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
\(Q_R\)
\(\cdot \ b\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
\(Q_R\)
\(\cdot \ b\)
\(Q_O\)
\(\cdot \ c\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
\(Q_R\)
\(\cdot \ b\)
\(Q_O\)
\(\cdot \ c\)
\(Q_M \cdot ab\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
\(Q_R\)
\(\cdot \ b\)
\(Q_O\)
\(\cdot \ c\)
\(Q_M \cdot ab\)
\(Q_C\)
\(+\)
\(+\)
\(+\)
\(+\)
\(=\)
\(0\)
Towards Polynomials
\(Q_L\)
\(\cdot \ a\)
\(Q_R\)
\(\cdot \ b\)
\(Q_O\)
\(\cdot \ c\)
\(Q_M \cdot ab\)
\(Q_C\)
\(+\)
\(+\)
\(+\)
\(+\)
\(=\)
\(0\)
Selector polynomials
Wire polynomials
Polynomial Representation
\(Q_C(X)\)
Proof of Knowledge
Coke from Bottle
Coke from Can
Victor
Peter
\(x\)
\(V\)
\(P\)
Coke from Can
Victor
Peter
Guess?
Bottle!
Proof of Knowledge
Coke from Bottle
Coke from Can
Victor
Peter
Try again!
Proof of Knowledge
Coke from Bottle
Victor
Peter
Can!
If \(P\) actually knows the taste, \( \Pr[ \langle P,V \rangle(x) = 1 ]\) = 1
If \(P\)'s claim is wrong, \( \Pr[ \langle P,V \rangle(x) = 1 ] = \left(\frac{1}{2}\right)^2 \)
\(\implies\) Completeness!
\(\implies\) Soundness!
Proof of Knowledge
Zero Knowledge Proofs
Zero Knowledge Proofs
Reveal!
Zero Knowledge Proofs
Zero Knowledge Proofs
Zero Knowledge Proofs
Zero Knowledge Proofs
Reveal!
Zero Knowledge Proofs
Zero Knowledge Proofs
On repeating the experiment a number of times,
- If the prover is honest, verifier accepts!
- If the prover is cheating, verifier will catch it!
- No information about 3-colouring is revealed!
\(\text{Completeness,}\)
\(\text{Soundness,}\)
\(\text{Zero-Knowledge!}\)
Promise of ZKPs
A Visual Tour of PLONK
By Suyash Bagad
A Visual Tour of PLONK
A deep dive in understanding PLONK through an example - the state-of-the-art zkSNARK proof system by Aztec Protocol.
- 47