Theory of Everything

Graph Signal Processing

with application to scRNA-seq

Quantifying the effect of experimental perturbations in single-cell RNA-sequencing data using graph signal processing

Quantifying the effect of experimental perturbations in single-cell RNA-sequencing data using graph signal processing

def filterfunc(x):
    return (np.exp(-b * np.abs(x / graph.lmax - a)**p))

filt = pygsp.filters.Filter(graph, filterfunc)
EES = filt.filter(RES, method="chebyshev", order=50)

Graph Signal Processing:

Overview, Challenges and Applications

Quick plan

  1. Spectral Graph Theory: study graph properties. Here I'll explain some existing algorithms.
     
  2. Graph Signal Processing: study signals on graphs. Here I'll propose some new algorithms, including the mentioned paper.

Intro to Spectral Graph Theory

Intro to Spectral Graph Theory

Questions:

  • Who remembers what are eigenvalues?
  • Who knows what is Fourier Transform?
  • Who knows what the Laplace Operator (∆) does?
  • Markov Random Fields
  • Electrical chains
  • Heat diffusion
  • Finite element method
  • Google PageRank algorithm
  • Random Walks on graphs
  • Spectral clustering
  • Pseudo-time ordering of cells
  • DiffusionMap visualization
  • Conos annotation transfer

What do all these processes have in common?

Intro to Spectral Graph Theory

Why should you even care?

Intro to Spectral Graph Theory

Why should you even care?

void smooth_cm(const std::vector<Edge> &edges, Mat &cm, 
               int max_n_iters, double c, double f, double tol, 
               const std::vector<bool> &is_label_fixed) {
  std::vector<double> sum_weights(cm.rows(), 1);
  for (int iter = 0; iter < max_n_iters; ++iter) {
    Mat cm_new(count_matrix);
    for (auto const &e : edges) {
      double weight = exp(-f * (e.length + c));
      if (is_label_fixed.empty() || !is_label_fixed.at(e.v_start)) {
        cm_new.row(e.v_start) += cm.row(e.v_end) * weight;
      }

      if (is_label_fixed.empty() || !is_label_fixed.at(e.v_end)) {
        cm_new.row(e.v_end) += cm.row(e.v_start) * weight;
      }
    }

    double inf_norm = (cm_new - cm).array().abs().matrix().lpNorm<Infinity>();
    if (inf_norm < tol)
      break;

    cm = cm_new;
  }
}
  • Markov Random Fields
  • Electrical chains
  • Heat diffusion
  • Finite element method
  • Google PageRank algorithm
  • Random Walks on graphs
  • Spectral clustering
  • Pseudo-time ordering of cells
  • DiffusionMap visualization
  • Conos annotation transfer

What do all these processes have in common?

\frac{dx}{dt} = -L x

Some examples

Gene networks

0

1

Associated with disease

No association with disease

0.5

0.375

0.625

0.5

Markov Random Field

Minimize

\sum_{(a,b) \in E} \left( x(a) - x(b) \right)^2

Some examples

Electrical networks

0V

1V

0.5

0.325

0.675

0.5

Potentials

\sum_{(a,b) \in E} \left( x(a) - x(b) \right)^2

Minimize

Some examples

Quadratic form minimization

\sum_{(a,b) \in E} \left( x(a) - x(b) \right)^2

Minimize over x

= x^T L x

Quadratic form

1V

0.5

0.5

0.325

0.675

0V

Graph Laplacian

System of linear equations

Applying the operator          

creates some flow on the graph

{\color{darkred} L} x
{\color{darkred} L} x

It's all about Laplacian

{\color{darkred}L} = {\color{darkblue} D} - {\color{darkgreen} A}
{\color{darkblue} d_{i,i}} = \sum_{j=1}^{N} {\color{darkgreen} A_{i,j}}
{\color{darkgreen} A}\\ {\color{darkblue} D}

: degree matrix

: adjacency matrix

Non-Normalized Graph Laplacian:

Connection to the Laplace Operator

Finite element method

\frac{dx}{dt} = {\color{darkred} -L} x
{\color{darkred} \Delta}u =\sum _{i=1}^{n}{\frac {\partial ^{2}u}{\partial x_{i}^{2}}}

Laplace Operator:

\frac{\partial u}{\partial t} = {\color{darkred} \Delta} u

Heat Equation:

Informally, the Laplacian operator gives the difference between the average value of a function in the neighborhood of a point, and its value at that point. [wiki]

Graph diffusion:

Other graph matrices:

\widetilde{L} = {\color{darkblue} D^{-\frac{1}{2}}} {\color{darkred} L} {\color{darkblue} D^{-\frac{1}{2}}}
P = {\color{darkblue} D^{-1}} {\color{darkred} L}
\color{darkgreen} A

Adjacency matrix

Normalized Laplacian

Random walk matrix

...

Other ways to define flow on graphs

{\color{darkred}L} = {\color{darkblue} D} - {\color{darkgreen} A}
{\color{darkblue} d_{i,i}} = \sum_{j=1}^{N} {\color{darkgreen} A_{i,j}}
{\color{darkgreen} A}\\ {\color{darkblue} D}

: degree matrix

: adjacency matrix

Non-Normalized Graph Laplacian:

Practical applications

Pseudotime estimation**

Conos Annotation Transfer

Google PageRank algorithm*

k-NN Smoothing

(no picture)

Practical applications

Pseudotime estimation**

Conos Annotation Transfer

Google PageRank algorithm*

k-NN Smoothing

(no picture)

Can we re-write the Velocity equations on graph?

Eigenvalues of the Laplacian matrix

L v_i = \lambda_i v_i

Eigenvalues:

\lambda_1 \le \lambda_2 \le ... \le \lambda_n

Eigenvectors:

v_1, ..., v_n

Eigenvalues of the Laplacian matrix

Courant-Fisher Theorem

\lambda_0 = \underset{||x||=1}{\mathrm{min}} x^T L x;\\ v_0 = \underset{||x||=1}{\mathrm{argmin}}\ x^T L x
x^T L x = \sum_{(a,b) \in E} w_{a,b} \left( x(a) - x(b) \right)^2
\lambda_1 = \underset{\substack{||x||=1\\x^Tv_0=0}}{\mathrm{min}} x^T L x;\\ v_1 = \underset{\substack{||x||=1\\x^Tv_0=0}}{\mathrm{argmin}}\ x^T L x
\lambda_0 = 0
v_0

is a constant vector

Connected nodes have close vector values!

Eigenvalues of the Laplacian matrix

Spectral Drawing

v_1
v_2

Eigenvalues of the Laplacian matrix

Spectral Drawing

emb <- uwot::umap(
    X, 
    metric="cosine", 
    init="spectral"
)

Eigenvalues of the Laplacian matrix

Diffusion Map

Normalized Laplacian

\widetilde{L_\alpha} = {\color{darkblue} D^{-\alpha}} {\color{darkred} L} {\color{darkblue} D^{-\alpha}}

Normalized Laplacian Random walk matrix

P_\alpha = \widetilde{D_\alpha^{-1}} \widetilde{L_\alpha^{-1}}

Non-Normalized Laplacian

{\color{darkred}L} = {\color{darkblue} D} - {\color{darkgreen} A}

Laplacian

Degree matrix

\widetilde{d_{\alpha_{i,i}}} = \sum_{j=1}^{N} \widetilde{L_{\alpha_{i,j}}}

Spectral drawing

Connected to Hitting Distances on graph

Eigenvalues of the Laplacian matrix

Spectral Clustering and Min Cut

k-Means in spectral space approximates Minimum k-cut

v_1
v_2
v_1
v_2

Practical applications

  • Spectral visualization
  • Diffusion Maps
  • Spectral clustering
  • Fast Minimal Cuts

Graph Signal Processing

Signals on graphs

Example: Gene expression as a signal

Signals on graphs

Alternative view on the Quadratic Form

Signal     is given over the graph domain.

{\color{purple} f}
\frac{\partial \color{purple} f(i)}{\partial{e_{i,j}}} = \sqrt{A_{i,j}} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)

Derivative over an edge:

Gradient:

\nabla {\color{purple} f(i)} = \Big[ \frac{\partial \color{purple} f(i)}{\partial{e_{i,j}}}, j \in adj(i) \Big]

Local variation:

||\nabla {\color{purple} f(i)}||_2 = \sum_{j \in adj(i)} \left( \sqrt{A_{i,j}} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right) \right)^2 =
= \sum_{j \in adj(i)} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2
\Delta = -L = -(D - A) = \nabla^T * \nabla

Laplacian:

Signals on graphs

Alternative view on the Quadratic Form

Local variation:

||\nabla {\color{purple} f(i)}||_2 = \sum_{j \in adj(i)} \left( \sqrt{A_{i,j}} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right) \right)^2 =
= \sum_{j \in adj(i)} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2
= {\color{purple} f^T} L {\color{purple} f}

Global variation:

S_2({\color{purple} f}) = \sum_{i \in V} \sum_{j \in adj(i)} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2 =
= \sum_{(i, j) \in E} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2

Signals on graphs

Possible application: measure alignment quality

Local variation:

||\nabla {\color{purple} f(i)}||_2 = \sum_{j \in adj(i)} \left( \sqrt{A_{i,j}} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right) \right)^2 =
= \sum_{j \in adj(i)} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2
= {\color{purple} f^T} L {\color{purple} f}

Global variation:

S_2({\color{purple} f}) = \sum_{i \in V} \sum_{j \in adj(i)} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2 =
= \sum_{(i, j) \in E} A_{i,j} \left({\color{purple} f(i)} - {\color{purple} f(j)}\right)^2
  • Signal = Expression: we can measure local / global variation of expression after the alignment and compare it to the variation before
     
  • Signal = Sample labels: we can measure local variation of samples

Example: Gene expression as a signal

k-NN smoothing is noise filtering

Image filtering

Image filtering

Filter size = k-hop on graph

Can we increase k?

Grid = Graph

Image filtering

Fourier Transform

  • Represents signal as a combination of waves
  • Spectral domain: frequency vs amplitude
  • Every pixel has some info from every other pixel
  • We can work with frequencies!
  • Fast Fourier Transform: O(N log N)

Image filtering

Spectral Domain Filters

Low-pass filter*

High-pass filter**

Fourier transform on graphs

For eigenvector      :

v_i
v_i^T L v_i = \lambda_i ||v_i||_2 = \lambda_i

Global variation:

S_2(f) = f^T L f

Fourier transform on graphs

f(i) = \sum_{k = 1}^{N-1} \hat{f}(\lambda_k) v_k(i)

Inverse Fourier transform of     :

\hat{f}
\hat{f}(\lambda_k) = \sum_{i \in V} (f(i) v_k(i))

Fourier transform of     :

f

For eigenvector      :

v_i
v_i^T L v_i = \lambda_i ||v_i||_2 = \lambda_i

Global variation:

S_2(f) = f^T L f

Fourier transform on graphs

Function projections on frequencies

Fourier transform on graphs

General definition of filters

f(i) = \sum_{k = 1}^{N-1} \hat{f}(\lambda_k) v_k(i)

Inverse Fourier transform of     :

\hat{f}
f(i) = \sum_{k = 1}^{N-1} {\color{darkred} g(\lambda_k)} \hat{f}(\lambda_k) v_k(i)

Applying a

spectral filter    :

g

Fourier transform on graphs

Example: Tikhonov regularization

It's just a low-pass filter

\underset{x}{\mathrm{argmin}}\left( ||x - f||_2^2 + \gamma x^T L x \right)
f(i) = \sum_{k = 1}^{N-1} {\color{darkred} \frac{1}{1 + \gamma \lambda_k}} \hat{f}(\lambda_k) v_k(i)

Fourier transform on graphs

Computational problems

  • Direct Fourier transform takes
\mathrm{O}(|V|^3)
  • We can do a polynomial approximation for
\mathrm{O}(|E|)

Possible application

Tikhonov regularization for expression correction?

  • We can use Tikhonov regularization as for correcting batch effect using the Conos graph
  • Gamma is a correction strength
  • We can determine it comparing corrected expression variation to expression variation of individual samples
\underset{x}{\mathrm{argmin}}\left( ||x - f||_2^2 + \gamma x^T L x \right)

Filters on graphs

Back to images

Low-pass filter*

High-pass filter**

MELD: low-pass filter

def filterfunc(x):
    return (np.exp(-b * np.abs(x / graph.lmax - a)**p))

filt = pygsp.filters.Filter(graph, filterfunc)
EES = filt.filter(RES, method="chebyshev", order=50)
g(\lambda) = e^{(-\beta |\frac{\lambda}{\lambda_{max}} - \alpha|)^p}
\beta = 60\\ \alpha = 0\\ p = 1

MELD: low-pass filter

Other filter parameters

g(\lambda) = e^{(-\beta |\frac{\lambda}{\lambda_{max}} - \alpha|)^p}

Other filter parameters

g(\lambda) = e^{(-\beta |\frac{\lambda}{\lambda_{max}} - \alpha|)^p}

Possible applications

  • Whatever we need to smooth, low-pass filters work much better than k-NN smoothing.
     
  • Low-pass filters are a proper way for Kernel Density Estimation on graphs. We can at least apply it to estimate density of healthy vs control samples for cross-condition comparison.
     
  • Can we use high-pass filters over expression to detect cell type boundaries? :)

Other signal transformations

Translation

Modulation

Convolution

Dilation

Other signal transformations

Down-sampling

Other signal transformations

Down-sampling

We can down-sample graph (both vertices and edges), preserving both graph topology and the signal!

We can do a better PAGA:

Other signal transformations

  • Wavelet analysis (on the example of hierarchical subtraction)
  • Time-vertex domain: graph is one dimension and time is another
  • Random Processes on graphs

Multiscale Wavelet Analysis

Graph Signal Processing

By Viktor Petukhov

Graph Signal Processing

Journal club presentation based on https://www.biorxiv.org/content/10.1101/532846v3 and https://ieeexplore.ieee.org/document/8347162

  • 1,930