Vega-Lite
A Grammar of Interactive Graphics
Crash Course!
What
Background
"Vega-lite is a high-level grammar of interactive graphics. It provides a concise, declarative JSON syntax for rapidly generating visualizations to support analysis."
D3 -> Vega -> Vega-Lite
Stats
No | Item | Description |
---|---|---|
1. | Total Commits | 9,105 |
2. | Last Commit | 4 days ago |
3. | Opened Issues | 475 out of 2,645 |
4. | Opened Pull Requests | 24 out of 4,393 closed |
5. | Total Stars | 3.4k |
6. | Total Fork | 432 |
7. | First Public Release | 9th May 2015 (v.0.6.4) |
8. | Latest version | v5.1.0 |
Contributers
From the University of Washington Interactive Data Lab:
Why
Existing Tools
Facilitate rapid exploration with concise specifications by omitting low-level details.
Infer sensible defaults and allow customization by overriding defaults.
But limited support for interactions.
Closed source & proprietary software
Existing Tools
Offer fine-grained control for composing visualizations.
But requires technical expertise and verbose specifications (e.g. 100 LOCs for a bar chart)
How
Specifications
Item | Description |
---|---|
Data | Input data source to visualize |
Transform | Filter, aggregations, binning, etc |
Mark | Type of visualization |
Encoding | Mapping data to mark properties |
Scale | Mapping data values to visual values |
Guides | Axes & Legends that visualize scales |
Measurement
No | Type | Description |
---|---|---|
1 | Quantitative | Numerical values |
2 | Temporal | Datetime values |
3 | Ordinal | Categorical values that have natural orders or ranking (e.g. size, priority, severity) |
4 | Nominal | Categorical values without specific orders (e.g. colors, genders, country) |
Transformations
No | Transforms | Description |
---|---|---|
1 | Aggregate | Perform aggregations |
2 | Bin | Discretizes numeric values into a sets of bins (for Histogram) |
3 | Filter | Filter certain conditions |
4 | Time unit | Convert datetime into ordinal |
5 | Calculate | Derive new categorical values based on a formula |
6 | Impute | Impute missing data |
7 | Lookup | Perform join with lookup table |
Aggregations
No | Function | Description |
---|---|---|
1 | Mean | Average of values |
2 | Sum | Addition of all values |
3 | Median | Middle value |
4 | Min | Smallest value |
5 | Max | Largest value |
6 | Count | No of records |
Composition
No | Function | Description |
---|---|---|
1 | Facet | Partition data to create view for each subset (col / row) |
2 | Layer | Place views on top of each other |
3 | Concat | Place views side-by-side (hconcat / vconcat) |
4 | Repeat | Concat similar views with difference field |
Learn by Examples
- Single View Specification
- Layered & Multi-View Composition
- Interactions with Selection
Single View
{
"data": { "url": "data/seattle-weather.csv"},
"mark": "tick",
"encoding": {
"x": {
"field": "temp_max",
"type": "quantitative"
}
}
}
Strip Plot
{
"data": { "url": "data/seattle-weather.csv"},
"mark": "bar",
"encoding": {
"x": {
"bin": true,
"field": "temp_max",
"type": "quantitative"
},
"y": {
"aggregate": "count",
"type": "quantitative"
}
}
}
Histogram
{
"data": { "url": "data/seattle-weather.csv"},
"mark": "bar",
"encoding": {
"x": {
"timeUnit": "month",
"field": "date",
"title": "Month"
},
"y": {
"aggregate": "mean",
"field": "temp_max",
"type": "quantitative",
"title": "Max Temp"
},
"color": {
"field": "weather",
"type": "nominal",
"scale": {
"domain": ["sun", "fog", "drizzle", "rain", "snow"],
"range": ["#e7ba52", "#c7c7c7", "#aec7e8", "#1f77b4", "#9467bd"]
},
"title": "Weather type"
}
}
}
Color & Scale
Multi Views
{
"data": { "url": "data/seattle-weather.csv"},
"mark": "bar",
"encoding": {
...
"column": {
"field": "weather",
"type": "nominal",
"title": "Weather type"
}
}
}
Facet
{
"data": {"url": "data/seattle-weather.csv"},
"layer": [
{
"mark": "bar",
"encoding": {
"x": {"timeUnit": "month", "field": "date", "title": "Month"},
"y": {
"aggregate": "mean",
"field": "temp_max",
"type": "quantitative",
"title": "Max Temp"
}
}
},
{
"mark": "rule",
"encoding": {
"y": {"aggregate": "mean", "field": "temp_max", "type": "quantitative"},
"color": {"value": "red"},
"size": {"value": 3}
}
}
]
}
Layering
{
"data": {"url": "data/seattle-weather.csv"},
"vconcat": [
{
"mark": "bar",
"encoding": {
"x": {"timeUnit": "month", "field": "date", "title": "Month"},
"y": {
"aggregate": "mean",
"field": "temp_max",
"type": "quantitative",
"title": "Max Temp"
}
}
},
{
"mark": "bar",
"encoding": {
"x": {"timeUnit": "month", "field": "date", "title": "Month"},
"y": {
"aggregate": "mean",
"field": "precipitation",
"type": "quantitative",
"title": "Precipitation"
}
}
}
]
}
Concat
{
"repeat": {"column": ["precipitation", "temp_max", "wind"]},
"spec": {
"data": {"url": "data/seattle-weather.csv"},
"mark": "bar",
"encoding": {
"x": {"timeUnit": "month", "field": "date", "type": "ordinal"},
"y": {
"aggregate": "mean",
"field": {"repeat": "column"},
"type": "quantitative"
}
}
}
}
Repeat
{
"repeat": {
"column": ["precipitation", "temp_max", "wind"],
"row": ["wind", "temp_max", "precipitation"]
},
"spec": {
"data": {"url": "data/seattle-weather.csv"},
"mark": "point",
"encoding": {
"x": {
"field": {"repeat": "row"},
"type": "quantitative"
},
"y": {
"field": {"repeat": "column"},
"type": "quantitative"
}
}
}
}
Repeat Both Axes
All Together
Interactions
{
"data": {"url": "data/cars.json"},
"mark": "point",
"transform": [{
"calculate": "'https://www.google.com/search?q=' + datum.Name", "as": "url"
}],
"encoding": {
"x": {"field": "Horsepower", "type": "quantitative"},
"y": {"field": "Miles_per_Gallon", "type": "quantitative"},
"color": {"field": "Origin", "type": "nominal"},
"tooltip": {"field": "Name", "type": "nominal"},
"href": {"field": "url", "type": "nominal"}
}
}
Tooltip & Link
{
"data": { "url": "data/cars.json"},
"mark": "circle",
"params": [{
"name": "brush",
"select": "interval"
}],
"encoding": {
"x": {
"field": "Horsepower",
"type": "quantitative"
},
"y": {
"field": "Miles_per_Gallon",
"type": "quantitative"
},
"color": {
"condition": {"param": "brush", "field": "Origin", "type": "nominal"},
"value": "grey"
}
}
}
Selection
{
"data": {"url": "data/cars.json"},
"transform": [{"calculate": "year(datum.Year)", "as": "Year"}],
"layer": [{
"params": [{
"name": "CylYr",
"value": [{"Cylinders": 4, "Year": 1977}],
"select": {"type": "point", "fields": ["Cylinders", "Year"]},
"bind": {
"Cylinders": {"input": "range", "min": 3, "max": 8, "step": 1},
"Year": {"input": "range", "min": 1969, "max": 1981, "step": 1}
}
}],
"mark": "circle",
"encoding": {
"x": {"field": "Horsepower", "type": "quantitative"},
"y": {"field": "Miles_per_Gallon", "type": "quantitative"},
"color": {
"condition": {"param": "CylYr", "field": "Origin", "type": "nominal"},
"value": "grey"
}
}
}, {
"transform": [{"filter": {"param": "CylYr"}}],
"mark": "circle",
"encoding": {
"x": {"field": "Horsepower", "type": "quantitative"},
"y": {"field": "Miles_per_Gallon", "type": "quantitative"},
"color": {"field": "Origin", "type": "nominal"},
"size": {"value": 100}
}
}]
}
Input Selection
{
"data": {"url": "data/cars.json"},
"params": [
{"name": "grid", "select": "interval", "bind": "scales"}
],
"mark": "circle",
"encoding": {
"x": {
"field": "Horsepower",
"type": "quantitative",
"scale": {"domain": {"param": "grid"}}
},
"y": {
"field": "Miles_per_Gallon",
"type": "quantitative",
"scale": {"domain": {"param": "grid"}}
},
"size": {"field": "Cylinders", "type": "quantitative"},
"color": {"field": "Origin", "type": "nominal"}
}
}
Zoom
{
"data": {"url": "data/sp500.csv"},
"vconcat": [
{
"width": 480,
"mark": "area",
"encoding": {
"x": {
"field": "date",
"type": "temporal",
"scale": {"domain": {"param": "brush"}},
"axis": {"title": ""}
},
"y": {"field": "price", "type": "quantitative"}
}
},
{
"width": 480,
"height": 60,
"mark": "area",
"params": [
{"name": "brush", "select": {"type": "interval", "encodings": ["x"]}}
],
"encoding": {
"x": {"field": "date", "type": "temporal"},
"y": {
"field": "price",
"type": "quantitative",
"axis": {"tickCount": 3, "grid": false}
}
}
}
]
}
Overview & Detail
Resources
Vega-lite: A Visualization Grammar
By Wan Mohd Hafiz
Vega-lite: A Visualization Grammar
- 304