Space-efficient binary optimization for variational computing

Adam Glos

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

Overview

Introduction to NISQ era quantum

combinatorial optimization

 

Making problems quantum accesible - QUBO and Ising model

Something more - HOBO

Future ideas?

The problem: TSP

given the cost between each cities, find the cheapest route such that the route goes through all cities and comes back

We need short, mathematical, and general description

Integer programming?

Binary optimization

where all variables are bits

Since every number can be represented by bits...

0-1 integer programming is quite general!

Quadratic Unconstrained Binary Optimization

f(b)=\sum_{i,j} Q_{i,j} b_ib_j+ C

Any NP-complete problem can be turned into QUBO

Every binary function                           can be turned into quantum polynomial, but not necessarily quadratic!

f:\{0,1\}^n \to \mathbb R
A\sum\limits_{v=0}^{N-1} \left( 1 - \sum\limits_{t=0}^{N-1} b_{tv} \right)^2 + A \sum\limits_{t=0}^{N-1} \left( 1 - \sum\limits_{v=0}^{N-1} b_{tv} \right)^2 + B \sum\limits_{\substack{v,w=0\\v\neq w}}^{N-1} W_{vw} \sum\limits_{t=0}^{N-1} b_{tv}b_{t+1,w}
\sum_{I\subseteq \{1,\dots,n\}} \alpha_I \prod_{i\in I} b_i

Lucas, Andrew. "Ising formulations of many NP problems." Frontiers in Physics 2 (2014): 5.

Ising model

Instead of 0-1, we have now -1/1

If HOBO model has finite order, then it is small AND corresponding Ising model is small

This is not always true for higher order models

b_1b_2\cdots b_n
b_i \leftarrow \frac{1-s_i}{2}
s_i \leftarrow Z_i
\sum_{I\subseteq \{1,\dots,n\}} \alpha_I \prod_{i\in I} b_i
\sum_{I\subseteq \{1,\dots,n\}} \tilde \alpha_I \prod_{i\in I} Z_i
\sum_{I\subseteq \{1,\dots,n\}} \tilde \alpha_I \prod_{i\in I} s_i

QUBO is transformed to 2-local Ising model

Quantum optimization algorithms

Quantum annealing

Different input for each algorithm!

Variational optimization (VQE, QAOA)

Quantum annealing

\sum_{i\neq j} J_{ij} s_is_j + \sum h_i s_i +C
  1. Must be QUBO (quadratization sometimes needed)
  2. many (qu)bits needed
  3. graph embedding required

Variational Quantum Eigensolver

  1. Can be a general binary optimization - we only need an efficient procedure for calculating energy!
  2. just walking on a Hilbert space...
  3. ansatz-dependent
  4. designed for harder problems

Peruzzo, Alberto, et al. "A variational eigenvalue solver on a photonic quantum processor." Nature communications 5.1 (2014): 1-7.

QAOA - a special VQE

Unlike VQE, we have to implement the objective Hamiltonian

Still we can use higher order terms!

|++\ldots + \rangle
\exp(-\mathrm i r_{i}\sum_i X_i)
\exp(-\mathrm i p_i H_{\rm obj})
i \leftarrow i+1
| \varphi(p,r) \rangle

Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. "A quantum approximate optimization algorithm." arXiv preprint arXiv:1411.4028 (2014).

TSP - waste of qubits

We have n! possible routes

\log_2(n!) = \Theta(n \log n)

only N log(N) qubits!

QAOA - can we run it?

We have to implement the objective Hamiltonian

A_1\sum\limits_{t=1}^N H_{\rm valid} (b_t) + A_2\sum\limits_{t=1}^N \sum\limits_{t'=t+1}^N H_{\neq}(b_t,b_{t'}) + B\sum\limits_{\substack{i,j=1\\i\neq j}}^N W_{ij} \sum\limits_{t=1}^N H_\delta (b_t,i)H_\delta (b_{t+1},j).
H_{\neq}^{\rm HOBO}(b,b') = H_\delta^{\rm HOBO}(b,b') \coloneqq \prod_{k=1}^K (1- (b_k - b'_k)^2)
H_{\rm valid}^{\rm HOBO}(b_t) \coloneqq \sum_{k^0\in K_0} b_{t,k_0}\prod_{k=k^0+1}^{K-1} (1-(b_{t,k} - \tilde b_{k})^2)

QAOA - can we run it? cont.

\exp(-\mathrm i \alpha Z_1 Z_2 Z_3) ?
\exp(-\mathrm i (\alpha_1 Z_1 Z_2 Z_3+ \alpha_2 Z_1Z_2 )) \\= \exp(-\mathrm i \alpha_1 Z_1 Z_2 Z_3 ) \exp(-\mathrm i \alpha_2 Z_1 Z_2 )

QAOA - can we run it? cont.

For QUBO we need O(N) depth, for HOBO O(N^3) - much worse!

Is HOBO better?

N=3

N=4

N=3

N=5

N=4

Alternative approach - mixed

Text

Conclusions

We have developed an encoding, which

  • uses smaller number of qubits,
  • may be more efficient than QUBO,
  • has smaller relative feasible space,
  • produces much longer circuits than QUBO!

Glos, A., Krawiec, A., & Zimborás, Z. (2020). Space-efficient binary optimization for variational computing. arXiv preprint arXiv:2009.07309.

New idea !

\Huge \dagger

HOBO-size mixer

Change of the encoding (from binary to one-hot vector at inverse)

QUBO objective encoding

\theta
\theta'
|00\ldots0\rangle
|00\ldots0\rangle
|+\rangle
|\varphi(\theta,\theta')\rangle

QAOA Cracow 02.03.2021

By Adam Glos

QAOA Cracow 02.03.2021

  • 80